forked from sisl/Multilane.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjournal.txt
944 lines (653 loc) · 25 KB
/
journal.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
Tue 31 Jul 2018 04:08:53 PM PDT
correlation results with both 1.0 and 0.0 correlation
N = 5000 = 5000
sname => planner_cor = "pomcpow"=>0.0
sname => planner_cor = "pomcpow"=>1.0
sname => planner_cor = "qmdp"=>0.0
sname => planner_cor = "qmdp"=>1.0
sname => planner_cor = "outcome"=>0.0
sname => planner_cor = "outcome"=>1.0
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/cor_rob_Tuesday_31_Jul_15_23.csv
Mon 30 Jul 2018 02:44:54 PM PDT
N = 5000
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/cor_trend_Monday_30_Jul_14_38.csv
moved to dom_rob
Mon 30 Jul 2018 10:45:59 AM PDT
N = 5000 correlation robustness
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/cor_rob_Sunday_29_Jul_13_43.csv
Sat 28 Jul 2018 09:41:17 PM PDT
N = 2000 correlation robustness
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/cor_rob_Saturday_28_Jul_20_29.csv
Sat 28 Jul 2018 12:11:07 PM PDT
N = 2000 domain robustness
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/cor_trend_Saturday_28_Jul_01_26.csv
moved to dom_rob...
Fri 27 Jul 2018 10:42:18 AM PDT
Correlation robustness study with N = 2000
zsunberg@jodhpur:~/.julia/v0.6/Multilane$ julia -p 51 scratch/correlation_robustness.jl
N = 2000 = 2000
n_iters = 1000 = 1000
max_time = Inf = Inf
max_depth = 40 = 40
val = SimpleSolver() = Multilane.SimpleSolver()
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/cor_rob_Thursday_26_Jul_23_52.csv
Mon 30 Apr 2018 12:47:50 PM PDT
results for simple heuristic
data/gap_Monday_30_Apr_12_44.csv
Mon 30 Apr 2018 10:19:28 AM PDT
final 5k results
gap_Sunday_29_Apr_11_40.csv
Sat 28 Apr 2018 10:44:36 AM PDT
checkpoint containing 5k for fully correlated and some uncor
/tmp/gap_checkpoint_Saturday_28_Apr_10_38.csv
Fri 27 Apr 2018 10:11:57 AM PDT
Correlation trend data
data/cor_trend_Friday_27_Apr_03_39.csv
Thu 26 Apr 2018 10:59:04 AM PDT
omniscient x10 for correlated
data/gap_Thursday_26_Apr_06_13.csv
yikes - that doesn't really work
Wed 25 Apr 2018 06:02:43 PM PDT
outcome results
data/gap_Wednesday_25_Apr_17_59.csv
Wed 25 Apr 2018 01:03:09 PM PDT
[X] plots
[X] outcome only
[/] omniscient_x10 for correlation 1.0
[X] rerun correlation
[ ] rerun everything with 5k
[ ] pftdpw ?
Wed 25 Apr 2018 10:40:56 AM PDT
true and 0.75
data/gap_Wednesday_25_Apr_07_30.csv
Tue 24 Apr 2018 08:14:46 PM PDT
Results for nocor
data/gap_Tuesday_24_Apr_20_07.csv
Tue 24 Apr 2018 03:23:48 PM PDT
changed to no particle noise for uniform filter
Tue 24 Apr 2018 03:15:33 PM PDT
0.75 cor
data/uncor_gap_Monday_23_Apr_18_19.csv
Mon 23 Apr 2018 03:45:55 PM PDT
[ ] Debug mean
[X] See if mean works with the uniform filter on 0.75 (NO)
[ ] compare individual simulations of meanmpc with uniform and agg filters
[ ] Try outcome only
Fri 20 Apr 2018 07:16:38 PM PDT
Simulating... 62%|████████████████████████ | ETA: 0:08:56 From worker 45: car_j.x = 18.910574890289986
From worker 45: car_i.x = 23.5501036490487
From worker 45: car_j.x + dxs[j] = 33.94027537796539
From worker 45: car_i.x + dxs[i] = 35.153518985228885
From worker 45: pp.l_car = 4.0
From worker 45: Conflict because of noise: front:3, back:5
From worker 45: saving debug args to /tmp/julianVjRXH.jld
Simulating... 62%|████████████████████████ | ETA: 0:08:53WARNING: Error in Simulation
From worker 45: sim.metadata[:rng_seed] = 41247
Car nudged because of crash. From worker 45: saving debug hist to /tmp/julia3TreUM.jld
Fri 20 Apr 2018 05:56:34 PM PDT
front id: 37;
back id: 39
From worker 52: Conflict because of noise: front:3, back:5
From worker 52: saving debug args to /tmp/juliazv8xuq.jld
WARNING: Error in Simulation
Car nudged because of crash. From worker 52: saving debug hist to /tmp/juliaAKPG0b.jld
Fri 20 Apr 2018 01:31:00 PM PDT
Debugging crash
From worker 5: car_j.x = 18.9105
74890289986
From worker 5: car_i.x = 23.5501036490487
From worker 5: car_j.x + dxs[j] = 33.94027537796539
From worker 5: car_i.x + dxs[i] = 35.153518985228885
From worker 5: pp.l_car = 4.0
lambda = 0.5, meanmpc
/tmp/juliaIrxQaX.jld
Fri 20 Apr 2018 10:49:28 AM PDT
[ ] uncor
[ ] parcor with other filter
[ ] outcome uncertainty
Fri 20 Apr 2018 10:23:07 AM PDT
added partially correlated results
data/parcor_gap_Friday_20_Apr_02_39.csv
Thu 19 Apr 2018 08:33:56 PM PDT
Changed so new cars generated based on sp instead of s!!
Thu 19 Apr 2018 08:07:01 PM PDT
Debugging crash
car_j.x = 12.738286961794964
car_i.x = 16.8433083124826
car_j.x + dxs[j] = 36.17517816643702
car_i.x + dxs[i] = 30.587350751577564
pp.l_car = 4.0
Conflict because of noise: front:2, back:6
/tmp/juliaBVJiMr.jld
Car 2 did a negative lane change into car 6s lane
Thu 19 Apr 2018 01:02:10 PM PDT
[ ] focus on 0.75
Thu 19 Apr 2018 12:51:35 PM PDT
meanmpc for correlated
cor_gap_Thursday_19_Apr_12_49.csv
Thu 19 Apr 2018 10:40:17 AM PDT
results from running correlated omniscient with 10k simulations
data/cor_gap_Thursday_19_Apr_00_14.csv
Wed 18 Apr 2018 05:49:29 PM PDT
[ ] Get all correlated results
correlated + halfway through 0.75
/tmp/all_gaps_checkpoint_Wednesday_18_Apr_16_38.csv
Wed 18 Apr 2018 05:39:58 PM PDT
crash in baseline at cor 0.75, lambda = 2.0
Wed 18 Apr 2018 11:23:51 AM PDT
[X] Look at more_iters and see if it is good enough
Looks good enough
Wed 18 Apr 2018 10:33:03 AM PDT
The 5k sims test seems to have stalled
/tmp/all_gaps_checkpoint_Tuesday_17_Apr_19_19.csv
Wed 18 Apr 2018 10:20:36 AM PDT
cross entropy for omniscient
iteration 22
mean(d) = [8.04951, 4.49361, 10.7003]
det(cov(d)) = 0.005685112203029496
ev = eigvals(cov(d)) = [0.00245582, 1.0348, 2.23711]
(eigvecs(cov(d)))[:, j] = [-0.0265389, -0.920364, 0.390162]
(eigvecs(cov(d)))[:, j] = [0.782263, -0.262122, -0.565117]
(eigvecs(cov(d)))[:, j] = [0.622383, 0.290212, 0.726923]
creating 60 simulation sets............................................................
Simulating...100%|██████████████████████████████████████| Time: 0:28:16
mean(combined[:mean_reward]) = 0.34184144918572895
Tue 17 Apr 2018 02:06:08 PM PDT
pomcpow winning on correlated not fixed by 5k sims
run with more iterations?
optimize parameters?
Tue 17 Apr 2018 10:50:04 AM PDT
Problems...
pomcpow_winning_on correlated
nonconvexity on 0.75 (eliminate lambda = 8)
mlmpc worse than baseline
run with 5k
use meanmpc on uncorrelated?
Mon 16 Apr 2018 11:31:47 PM PDT
last before switching to lv_resample /tmp/all_gaps_checkpoint_Monday_16_Apr_23_12.csv
copied to data
Mon 16 Apr 2018 05:28:01 PM PDT
mlmpc beats baseline here
/home/zsunberg/.julia/v0.6/Multilane/data/all_gaps_Monday_16_Apr_15_05.csv
Fri 13 Apr 2018 10:26:52 AM PDT
first after fixing initialize_belief fix
zsunberg@bethpage:~/.julia/v0.6/Multilane$ julia -p 54 scratch/twogaps_cweights.jl
N = 2000 = 2000
n_iters = 1000 = 1000
max_time = Inf = Inf
max_depth = 40 = 40
val = SimpleSolver() = Multilane.SimpleSolver()
/home/zsunberg/.julia/v0.6/Multilane/data/all_gaps_Friday_13_Apr_10_17.csv
Fri 06 Apr 2018 10:53:04 PM PDT
[X] Car colors
[X] tree dots
[X] Car colors not just dependent on v0
Thu 05 Apr 2018 11:24:33 AM PDT
gaps with N=2000 old filter
all_gaps_Thursday_5_Apr_00_53.csv
Wed 04 Apr 2018 02:36:40 PM PDT
Running on jodhpur with N=2000 with old filter
Wed 04 Apr 2018 02:18:48 PM PDT
data/cor_trend_Tuesday_3_Apr_20_35.csv
This looks pretty good for a final correlation trend plot
Wed 04 Apr 2018 02:07:24 PM PDT
Run curves with old particle filter and N=2000
Wed 04 Apr 2018 01:19:38 PM PDT
data/all_gaps_Wednesday_4_Apr_04_20.csv
The particle filter upgrade DID NOT WORK Need to run with old and 2k sims or FIX
Tue 03 Apr 2018 05:03:05 PM PDT
[ ] make it so that lane termination only happens if it's not dangerous
Tue 03 Apr 2018 03:56:30 PM PDT
cweight speed results for 100 step sim with trivial policy; 5k particles
weights: 38.7 seconds
cweights: 21 seconds
10k particles
cweights 44 seconds
Tue 03 Apr 2018 01:44:19 PM PDT
Lots of problems:
Most of these problems are with MLMPC, so perhaps better filtering will fix:
UPGRADE TO EFFICIENT FILTERS
[X] Use cweights
[O] Use low variance resampling for outer loop
Tue 03 Apr 2018 01:37:14 PM PDT
allgaps
zsunberg@jodhpur:~/.julia/v0.6/Multilane$ julia -p 54 scratch/allgaps.jl
N = 1000 = 1000
n_iters = 1000 = 1000
max_time = Inf = Inf
max_depth = 40 = 40
val = SimpleSolver() = Multilane.SimpleSolver()
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/all_gaps_Monday_2_Apr_21_34.csv
Tue 03 Apr 2018 10:57:00 AM PDT
Need to add min speed termination
Tue 03 Apr 2018 10:31:33 AM PDT
correlation trend with N=5000
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/cor_trend_Tuesday_3_Apr_07_20.csv
Mon 02 Apr 2018 09:26:58 PM PDT
zsunberg@bethpage:~/.julia/v0.6/Multilane$ julia -p 54 scratch/correlation_trend.jl
N = 1000 = 1000
n_iters = 1000 = 1000
max_time = Inf = Inf
max_depth = 40 = 40
val = SimpleSolver() = Multilane.SimpleSolver()
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/cor_trend_Monday_2_Apr_19_49.csv
Mon 02 Apr 2018 04:58:23 PM PDT
do correlation trend
Mon 02 Apr 2018 02:53:33 PM PDT
zsunberg@jodhpur:~/.julia/v0.6/Multilane$ julia -p 54 scratch/allgaps.jl
N = 500 = 500
n_iters = 1000 = 1000
max_time = Inf = Inf
max_depth = 40 = 40
val = SimpleSolver() = Multilane.SimpleSolver()
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/baseline_curve_Monday_2_Apr_14_49.csv
Mon 02 Apr 2018 12:37:11 PM PDT
Expected runtime for allgaps
30 minutes per point x 5 points x 4 solvers x 3 cors = 30 hours.
Lower to 1000 iters, 500 sims ~= 1.5 hours
Mon 02 Apr 2018 12:28:41 PM PDT
Realized that allgaps mistakenly uses the optimistic heuristic - re-running
Mon 02 Apr 2018 11:24:45 AM PDT
zsunberg@jodhpur:~/.julia/v0.6/Multilane$ julia -p 54 scratch/allgaps.jl
N = 1000 = 1000
n_iters = 10000 = 10000
max_time = Inf = Inf
max_depth = 40 = 40
val = OptimisticValue() = Multilane.OptimisticValue()
/home/zsunberg/.julia/v0.6/Multilane/data/baseline_curve_Sunday_1_Apr_02_18.csv
Sat 31 Mar 2018 10:07:38 PM PDT
With 20000 iters and value... weird
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/baseline_curve_Saturday_31_Mar_19_03.csv
Sat 31 Mar 2018 10:06:50 PM PDT
Reproduction with lambda = 0: you can't get less than 13.8 seconds
zsunberg@bethpage:~/.julia/v0.6/Multilane$ julia -p 54 scratch/reproduce.jl
N = 500 = 500
n_iters = 500 = 500
max_time = Inf = Inf
max_depth = 20 = 20
val = SimpleSolver() = Multilane.SimpleSolver()
lambda = 0.0
k = "mlmpc"
Simulating...100%|██████████████████████████████████████| Time: 0:01:08
extrema(data[:time_to_lane]) = (4.5, 36.75)
mean(data[:time_to_lane]) = 15.2745
mean(data[:nb_brakes]) = 0.69
extrema(data[:init_n_cars]) = (4, 7)
mean(data[:init_n_cars]) = 5.618
mean(data[:mean_search_time]) = 0.2510736670276966
mean(data[:reward]) = 0.4020048199087055
minimum(data[:min_speed]) = 0.09838861831921974
k = "baseline"
Simulating...100%|██████████████████████████████████████| Time: 0:01:14
extrema(data[:time_to_lane]) = (4.5, 248.25)
mean(data[:time_to_lane]) = 18.4035
mean(data[:nb_brakes]) = 0.628
extrema(data[:init_n_cars]) = (4, 7)
mean(data[:init_n_cars]) = 5.618
mean(data[:mean_search_time]) = missing
mean(data[:reward]) = 0.4104719448438347
minimum(data[:min_speed]) = 0.0870830254537509
k = "omniscient"
Simulating...100%|██████████████████████████████████████| Time: 0:00:46
extrema(data[:time_to_lane]) = (4.5, 43.5)
mean(data[:time_to_lane]) = 13.8465
mean(data[:nb_brakes]) = 0.612
extrema(data[:init_n_cars]) = (4, 7)
mean(data[:init_n_cars]) = 5.618
mean(data[:mean_search_time]) = 0.24905548593471075
mean(data[:reward]) = 0.43650107055018406
minimum(data[:min_speed]) = 3.5155584119643777
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/reproduction_Saturday_31_Mar_18_42.csv
Sat 31 Mar 2018 06:36:44 PM PDT
Attempt at reproduction
/home/zsunberg/.julia/v0.6/Multilane/data/reproduction_Saturday_31_Mar_18_32.csv
Sat 31 Mar 2018 05:16:24 PM PDT
Unable to reproduce the old results with the current reward function
Sat 31 Mar 2018 04:52:43 PM PDT
Got nb_brakes of .4; ttl of 17 with reward of 1; switching to reward 10
Sat 31 Mar 2018 04:46:38 PM PDT
In reproducing results got nb_brakes of like 0.07 and ttl of like 28 with reward of 1
^ Noticed that this was because I was using a SuccessReward
Sat 31 Mar 2018 03:59:33 PM PDT
Tried to reproduce results... saw no brakes and ttl of 5.7 with lane reward 1
^ this was because I set lane_length to 0.75
Sat 31 Mar 2018 09:27:13 PM PDT
Shoot - gotta run it without pomcpow because I don't have an uncorrelated sr belief updater
Sat 31 Mar 2018 01:25:54 PM PDT
[O] run fully-correlated with value to compare with rollout
[O] repeat acc results
[ ] get rho = 0.0 working
[ ] run rho = 0.75 for plot
[ ] run rho = 0.0 for plot
[ ] run correlation trend
Fri 30 Mar 2018 05:27:22 PM PDT
Big iter parity? (not promising)
zsunberg@jodhpur:~/.julia/v0.6/Multilane$ julia -p 54 scratch/gap_iter_parity.jl
N = 1000 = 1000
n_iters = 10000 = 10000
max_time = Inf = Inf
max_depth = 40 = 40
/home/zsunberg/.julia/v0.6/Multilane/data/baseline_curve_Friday_30_Mar_13_36.csv
Fri 30 Mar 2018 05:19:12 PM PDT
gap_500.jl
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/baseline_curve_Friday_30_Mar_16_27.csv
Fri 30 Mar 2018 12:16:10 PM PDT
Things that I could do
[ ] Adjust reward functions
[ ] Do cross-entropy
[X] Work on parallel
[0] Value instead of rollout
[1] Do correlation study
[ ] Non-aggressiveness filter
Fri 30 Mar 2018 09:36:59 AM PDT
with fully-corellated
/home/zsunberg/.julia/v0.6/Multilane/data/baseline_curve_Friday_30_Mar_07_36.csv
Thu 29 Mar 2018 03:26:12 PM PDT
Need to keep track of the average number of iters *ON THE FIRST STEP*
Wed 28 Mar 2018 09:11:16 PM PDT
gap with new qmdp
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/baseline_curve_Wednesday_28_Mar_16_55.csv
Tue 27 Mar 2018 12:53:59 PM PDT
With lots of comutation:
"pomcpow" => POMCPOWSolver(tree_queries=10_000_000,
criterion=MaxUCB(2.0),
max_depth=40,
max_time=20.0,
enable_action_pw=false,
k_observation=4.0,
alpha_observation=1/8,
estimate_value=FORollout(SimpleSolver()),
check_repeat_obs=false,
node_sr_belief_updater=AggressivenessPOWFilter(wup)
)
zsunberg@bethpage:~/.julia/v0.6/Multilane$ julia -p 54 scratch_18_03/long_compute.jl
N = 2000 = 2000
lambda = 1.0
k = "pomcpow"
Simulating...100%|██████████████████████████████████████| Time: 4:40:09
% reaching: 97.2; % braking: 3.8
extrema(data[:distance]) = (141.58465389163146, 1038.654002736081)
mean(data[:mean_iterations]) = 53012.58754853618
k = "omniscient"
Simulating...100%|██████████████████████████████████████| Time: 0:16:58
% reaching: 80.1; % braking: 1.1
extrema(data[:distance]) = (140.8302636907952, 1032.1174082929251)
mean(data[:mean_iterations]) = 10113.634496570035
Writing data to /home/zsunberg/.julia/v0.6/Multilane/data/baseline_curve_Monday_26_Mar_23_54.csv
This is much better...
Need to optimize parameters I suppose
Fri 23 Mar 2018 01:25:54 PM PDT
- Store particles by car? Yes
- Aggressiveness? Yes
Tue 20 Mar 2018 10:37:28 AM PDT
[X] Curve with baseline
[ ] Plot baseline curve
[X] Quick profile
[X] Curve with upper bound
[/] Curve with MLMPC
[/] Curve with PFT-DPW
Mon 19 Mar 2018 06:23:30 PM PDT
Resurrection
[X] Figure out how to run with assume normal solver
Wed 18 Jan 2017 01:40:01 PM PST
[ ] Add Correlation metric
plot
finished triangular (but sometimes an error seems to happen)
running scratch/correlation_trend.jl
Fri 13 Jan 2017 05:20:08 PM PST
Interface for behavior model
max_accel
gen_action returns a multilane action
Thu 12 Jan 2017 10:05:45 PM PST
Working on failure_6 in test_actions
Mon 09 Jan 2017 06:17:22 PM PST
working on src/debug.jl to debug triangular distribution
Wed 23 Nov 2016 03:55:19 PM PST
[ ] run correlation_trend.jl on sherlock
[ ] fix the noise
Tue 01 Nov 2016 12:18:57 PM PDT
[ ] get correlation_trend.jl to run and then run it on sherlock
Fri 14 Oct 2016 11:07:04 AM PDT
make an x=correlation y=fraction success graph
Tue 27 Sep 2016 07:29:58 PM PDT
[ ] Create success/failure problem
Ends after T seconds or when lane is reached or when braking more than 4m/s^2
+1 reward if transition into target lane
BAD THINGS
env_cars instead of cars
Fri 26 Aug 2016 08:05:02 PM PDT
[X] Automatic newest filename
[ ] Continuous behaviors
[ ] Run gap study
Tue 16 Aug 2016 10:31:52 PM PDT
[ ] do a quick profile with rerun
Tue 16 Aug 2016 10:12:10 PM PDT
[ ] Look at results aug 16 20 31
Sat 13 Aug 2016 10:48:57 AM PDT
[X] State num overlay
[X] Car ID Overlay
[ ] Debug braking
Thu 11 Aug 2016 05:50:20 PM PDT
Overlays:
[O] crash
[X] Hello World
[X] hard brake
[O] behavior type
Thu 11 Aug 2016 09:33:51 AM PDT
[X] rename :eval_problem_key to :problem_key in stats
[X] rename :soln_problem_key to :solver_problem_key
[X] record test_set_key in stats
Wed 10 Aug 2016 09:43:55 AM PDT
[X] separate parameters by product and non-product
Wed 27 Jul 2016 11:03:03 AM PDT
Maybe the reason why there are so many brakes is because of the randomness in the acceleration
Mon 25 Jul 2016 01:08:09 PM PDT
[Y] All simulations are of the pomdp???
No, because of the upper bound
What we actually need is to verify that the POMDP and MDP produce the same thing
Yes, should just make fully observable version - still won't handle the fact that observations might mess up the random number sequence
Maybe generate a dummy observation to deal with the random alignment
[ ] Implement POMDP framework and start to run it
[O] Add action playback policy to POMDPToolbox
[O] Write tests to verify that POMDP and MDP are equivalent
Sat 16 Jul 2016 03:38:04 PM PDT
Reducing the number of brakes
Random solver:
With appear_clearance = 20
nb_brakes = 31.94
time_to_lane = 198.01
ratio = 0.16
With dynamic clearance
nb_brakes = 28.91
time_to_lane = 203.4
ratio = 0.14
SimpleSolver:
With appear_clearance = 20
nb_brakes = 3.369
time_to_lane = 15.56
ratio = 0.217
With dynamic clearance
nb_brakes = 2.966
time_to_lane = 13.8697
ratio = 0.214
Doesn't look like it's happening when new cars are generated
back to clearance = 20
tried to change aggressive b to 1.8
heuristic ratio = 0.217
random ratio = 0.164
tried to change threshold to 2.5
heuristic ratio = 0.168
random ratio = 0.117
Thu 14 Jul 2016 11:24:02 AM PDT
Local Theresa Speed Tests
with 7 cores: 2:52
with 4 cores: 4:13
Thu 14 Jul 2016 10:52:30 AM PDT
Timing test:
with 38 cores: 11:50 Progress meter time
with 20 cores: 14.59 Progress meter time (but a lot of the end was with only one core running)
Wed 13 Jul 2016 02:38:32 PM PDT
[ ] Run tests on tula with changes
[ ] Think about whether I need different solvers
[ ] Read up on literature for doing this exact task
[O] Program a really aggressive heuristic (the simple one is pretty aggressive now)
[ ] Work on POMCP dpw
[ ] XXX Cars do not seem to be braking to avoid the ego
[ ] Change no_crash_model:217 to < 0.0
Tue 12 Jul 2016 11:32:45 AM PDT
[X] Debugging a crash - results_Jul_12_11_17.jld, 154
- Another blue car changes lanes right into the ego
[X] Print the car id in the visualization
[X] Write a debugging script
- TWO PROBLEMS
[X] blue car ignores the ego car (MOBIL.jl:128)
[X] Why does the ego not slam on its brakes?
i.e. why is sim.action_hist[5] not in actions(problem, sim.action_hist[5])?
Answer: because the Simple heuristic does not emergency brake
Thu 07 Jul 2016 12:27:33 PM PDT
[O] Get a robust curve
[X] Figure out which simulations are taking so long (on local)
- All robust are taking a long time
[X] Write a script that just runs the first one
- It appears that the planner is just too scared
[X] Verify that it is too scared
- Actually, it just doesn't do anything - so there is a bug somewhere
Mon 04 Jul 2016 03:19:40 PM PDT
[X] Start simulation with robust
[ ] investigate crash
Fri 01 Jul 2016 10:41:40 AM PDT
[X] Start a simulation with 2.0 m/s
[X] flush in pmapprogressmeter
[X] Get robust working
[X] Start a simulation with high discount
Wed 29 Jun 2016 05:36:27 PM PDT
[X] check that lane_change is in lanes per second
[X] what is y_interval?
- plotting is dependent on it - in plotting carstate.y*y_interval is the y location
[X] why is there also w_lane? They are both 4. by default
[X] Replace y_interval by w_lane? YES
[ ] what should the lane change rate be?
[X] get rid of rationality? I don't understand it, so YES
[X] plot histogram of time to lane
[ ] implement robust
[ ] split into generating problems/initial conditions and running solvers
Wed 29 Jun 2016 02:58:46 PM PDT
[X] plot just the important ones
[X] get logsim over to tula
[O] Figure out how to rerun with new solvers
[O] rerun with new solvers
[X] Make an update for Mykel
[X] Generate a set of curves
[X] Describe challenges
Mon 27 Jun 2016 02:15:09 PM PDT
The policy is just doing really dumb stuff
Fri 24 Jun 2016 07:51:20 PM PDT
I want to be able to investigate a simulation
I HATE IPYTHON NOTEBOOKS
First, get initial conditions, then do test_run
But, if I want to examine the tree, I have to have the policy
so test_run should return the policy
should be able to visualize with that
PUT AS LITTLE CODE AS POSSIBLE IN THE DAMN NOTEBOOK
Fri 24 Jun 2016 06:45:36 PM PDT
[ ] Simulation visualization
Thu 23 Jun 2016 09:38:46 PM PDT
Tonight:
[X] Travel
Friday:
[X] End at lane reached
[ ] Robust Running
Saturday:
[ ] Profile
Thu 23 Jun 2016 07:48:20 PM PDT
[ ] FIGURE OUT WHAT REALISTIC PARAMETERS ARE
Thu 23 Jun 2016 02:25:27 PM PDT
[X] Plot
[ ] Profile
[ ] Run Robust
[ ] Investigate bugs
[ ] Crashes
[ ] Run until lane reached
[ ] Travel Reimbursement
Tue 21 Jun 2016 01:55:31 PM PDT
[X] Fix framework
[X] Run on Theresa
[X] Run on tula
[ ] Clean up
[ ] Graph
Mon 20 Jun 2016 09:57:17 PM PDT
[ ] XXX Can't cars just speed over to the desired lane before any others get there?
Sat 04 Jun 2016 12:56:27 PM PDT
[-] Upgrade to dataframes
[X] Use heuristic policy
[X] Increase max lambda
[X] Fewer Lambdas
[X] Extract number of hard brakes
[X] Extract time to lane
Potential Caveats:
1. These numbers are not realistic (Chris and I don't know what parameter values to use)
2. We need a sophisticated driver model
THU 12 MAY 2016 09:00:14 AM PDT
[ ] ROBUST MONTE CARLO TREE SEARCH
[ ] DATA STRUCTURE FOR A SIMULATION ROUND
SAT 07 MAY 2016 03:24:01 PM PDT
[X] PROFILE
[X] DO RANDOM
[X] NORWAY
[X] TRY DPW
[X] SET UP TULA
[O] FIGURE OUT AGGREGATION
FRI 06 MAY 2016 05:12:57 PM PDT
[X] ADD CAR ID
[ ] DO MCTS EVEN THOUGH IT DOESN'T WORK
FRI 06 MAY 2016 10:13:49 AM PDT
[X] BRAKING THRESHOLD POSITIVE NUMBER!
[X] GET RID OF DEBUGGING
[ ] SPEED ADJUSTMENTS SHOULD BE SLOW
THU 05 MAY 2016 11:01:47 AM PDT
[X] WHY IS THE VISUALIZATION PRODUCING TWO PLOTS?
[X] WHY ARE CARS STARTING IN ALL THE WRONG PLACES?
[X] WHY AREN'T CARS REGENERATING
[X] WHY IS IT TAKING ACTIONS TO GO OFF THE ROAD
WED 04 MAY 2016 06:07:53 PM PDT
[X] NEED TO DEFINE WHAT LANE_CHANGE IS
TUE 03 MAY 2016 06:35:47 PM PDT
WHY COMPLICATED TESTINg?
what is idx in behavior model
change strings to symbols in cautious/normal/aggressive
lane_change meaning in action vs other cars
[X] Goals for tomorrow
[X] Make decision about dynamics
[X] ZOH acceleration - start braking assumption at 1g
[X] Run simulation with random policy
[X] Julia sorting reverse
Tue 03 May 2016 03:05:13 PM PDT
[X] lane change snap
Mon 02 May 2016 05:10:10 PM PDT
[X] Read on the line of literature from the foundations paper
[X] define spawn model
[X] code spawn model
Sat 23 Apr 2016 09:28:51 PM PDT
Need to define
- encounter
- continuous time/ acceleration
- dvel_*ms*
- rationality
Fri 22 Apr 2016 11:54:49 AM PDT
Before quick crash test pruning: 4.7 seconds
After: 2 seconds (2 x speedup)
Fri 22 Apr 2016 11:26:08 AM PDT
Things to adjust:
[O] Cost function
[ ] Move crash testing from dynamics to action space
[ ] generate_sr tests for close calls
First thing to test:
[ ] Random policy vs MCTS with perfect state knowledge
Thu 21 Apr 2016 01:47:20 PM PDT
[X] test if crashed in state transition
This give about a 2x speedup in rollout simulation, see scratch/simlog_faster_crash.md
[X] update reward
[X] update isterminal
Mon 18 Apr 2016 08:18:04 PM PDT
visualization
history simulator