-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbipol2.py
185 lines (163 loc) · 9.64 KB
/
bipol2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
import pandas as pd
import numpy as np
import time
from sklearn.model_selection import train_test_split
#import seaborn as sns
#import transformers
from tqdm.auto import tqdm
from torch.utils.data import Dataset, DataLoader, TensorDataset, RandomSampler, SequentialSampler
import logging
from torch.optim import AdamW
import argparse
import pickle
from sklearn.metrics import f1_score, confusion_matrix, accuracy_score
import utility as util
logging.basicConfig(level=logging.ERROR)
from transformers import RobertaTokenizer, RobertaForSequenceClassification, ElectraTokenizer, ElectraForSequenceClassification, DebertaTokenizer, DebertaForSequenceClassification, get_linear_schedule_with_warmup
jig_folder = '/home/shared_data/bipol/Jigsaw_kaggle/'
sbic_folder = '/home/shared_data/bipol/sbicv2/'
new_folder = '/home/shared_data/bipol/new/'
### If run from CLI, you may change the 2 default arguments below.
parser = argparse.ArgumentParser(description='Bias Detection')
parser.add_argument('--data_folder', type=str, default=jig_folder, help='location of the data') # of sbic_folder
parser.add_argument('--model_name', type=str, default='roberta', help='name of the deep model') # or deberta
parser.add_argument('--lr', type=float, default=0.00002, help='initial learning rate')
parser.add_argument('--epochs', type=int, default=4, help='upper epoch limit')
parser.add_argument('--msave', type=str, default='newsaved_models', help='folder to save the finetuned model')
parser.add_argument('--batch_size', type=int, default=32, help='batch size') # smaller batch size for big model to fit GPU
args = parser.parse_args()
logging.basicConfig(level=logging.INFO)
transformers_logger = logging.getLogger("transformers")
transformers_logger.setLevel(logging.WARNING)
# Preparing the data
if args.data_folder == jig_folder:
train_df = pd.read_csv(jig_folder + 'jig_train.csv', header=0)
train_df = util.preprocess_pandas(train_df, list(train_df.columns))
eval_df = pd.read_csv(jig_folder + 'jig_val.csv', header=0)
eval_df = util.preprocess_pandas(eval_df, list(eval_df.columns))
test_df = pd.read_csv(jig_folder + 'jig_test.csv', header=0)
test_df = util.preprocess_pandas(test_df, list(test_df.columns))
elif args.data_folder == sbic_folder:
train_df = pd.read_csv(sbic_folder + 'sbic_train.csv', header=0)
train_df = util.preprocess_pandas(train_df, list(train_df.columns))
eval_df = pd.read_csv(sbic_folder + 'sbic_val.csv', header=0)
eval_df = util.preprocess_pandas(eval_df, list(eval_df.columns))
test_df = pd.read_csv(sbic_folder + 'sbic_test.csv', header=0)
test_df = util.preprocess_pandas(test_df, list(test_df.columns))
elif args.data_folder == new_folder:
train_df = pd.read_csv(new_folder + 'new_train.csv', header=0)
train_df = util.preprocess_pandas(train_df, list(train_df.columns))
eval_df = pd.read_csv(new_folder + 'new_val.csv', header=0)
eval_df = util.preprocess_pandas(eval_df, list(eval_df.columns))
test_df = pd.read_csv(new_folder + 'new_test.csv', header=0)
test_df = util.preprocess_pandas(test_df, list(test_df.columns))
def f1_score_func(labels, preds):
preds_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return f1_score(labels_flat, preds_flat, average=None), f1_score(labels_flat, preds_flat, average="weighted"), f1_score(labels_flat, preds_flat, average="macro")
def confusion_matrix_func(labels, preds):
preds_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
print(confusion_matrix(labels_flat, preds_flat)) # cell(r,c) 0,0- TN, 1,0- FN, 1,1- TP, 0,1- FP
tn, fp, fn, tp = confusion_matrix(labels_flat, preds_flat).ravel()
return tn, fp, fn, tp
def train(dataloader_train):
print("Training...")
loss_train_total = 0
for batch in tqdm(dataloader_train): #, desc='Epoch {:1d}'.format(epoch), leave=False, disable=False):
optimizer.zero_grad()
#model.zero_grad()
batch = tuple(b.to(device) for b in batch)
inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[2],}
outputs = model(**inputs)
loss = outputs[0] # loss_fn(outputs, batch[2]) #
#print("Loss ", loss)
#print("Loss item ", loss.item())
loss_train_total += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
loss_train_avg = loss_train_total/len(dataloader_train)
return loss_train_avg
def evaluate(dataloader_val):
print("Evaluation...")
model.eval()
loss_val_total = 0
predictions, true_vals = [], []
for batch in tqdm(dataloader_val):
batch = tuple(b.to(device) for b in batch)
inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[2],}
with torch.no_grad():
outputs = model(**inputs)
loss, logits = outputs[:2]
#logits = outputs[1]
loss_val_total += loss.item()
logits = logits.detach().cpu().numpy()
label_ids = inputs['labels'].cpu().numpy()
predictions.append(logits)
true_vals.append(label_ids)
loss_val_avg = loss_val_total/len(dataloader_val)
predictions = np.concatenate(predictions, axis=0)
true_vals = np.concatenate(true_vals, axis=0)
return loss_val_avg, predictions, true_vals
if __name__=="__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# loss_fn = torch.nn.CrossEntropyLoss()
if args.model_name == 'roberta':
tokenizer = RobertaTokenizer.from_pretrained('roberta-base', truncation=True, do_lower_case=True)
model = RobertaForSequenceClassification.from_pretrained('roberta-base').to(device)
elif args.model_name == 'deberta':
tokenizer = DebertaTokenizer.from_pretrained('microsoft/deberta-base', truncation=True, do_lower_case=True)
model = DebertaForSequenceClassification.from_pretrained('microsoft/deberta-base').to(device)
elif args.model_name == 'electra':
tokenizer = ElectraTokenizer.from_pretrained('google/electra-base-generator', truncation=True, do_lower_case=True)
model = ElectraForSequenceClassification.from_pretrained('google/electra-base-generator').to(device)
traindata = train_df
valdata = eval_df
outfile = args.model_name + '_' + args.data_folder.split('/')[-2] + '.txt'
label_dict = {} # For associating raw labels with indices/nos
possible_labels = traindata.label.unique()
for index, possible_label in enumerate(possible_labels):
label_dict[possible_label] = index
print(label_dict) #
traindata['label'] = traindata.label.replace(label_dict) # replace labels with their nos
valdata['label'] = valdata.label.replace(label_dict) # replace labels with their nos
print("Trainset distribution: \n", traindata['label'].value_counts()) # check data distribution
encoded_data_train = tokenizer.batch_encode_plus(traindata.comment_text.values, add_special_tokens=True, return_attention_mask=True, padding=True, truncation=True, return_tensors='pt')
encoded_data_val = tokenizer.batch_encode_plus(valdata.comment_text.values, add_special_tokens=True, return_attention_mask=True, padding=True, truncation=True, return_tensors='pt')
labels_train = torch.tensor(traindata['label'].values)
labels_val = torch.tensor(valdata['label'].values)
input_ids_train = encoded_data_train['input_ids'].to(device)
attention_masks_train = encoded_data_train['attention_mask'].to(device)
input_ids_val = encoded_data_val['input_ids'].to(device)
attention_masks_val = encoded_data_val['attention_mask'].to(device)
labels_train = labels_train.to(device)
labels_val = labels_val.to(device)
dataset_train = TensorDataset(input_ids_train, attention_masks_train, labels_train)
dataset_val = TensorDataset(input_ids_val, attention_masks_val, labels_val)
dataloader_train = DataLoader(dataset_train, sampler=RandomSampler(dataset_train), batch_size=args.batch_size)
dataloader_validation = DataLoader(dataset_val, sampler=SequentialSampler(dataset_val), batch_size=args.batch_size)
optimizer = AdamW(model.parameters(), lr=args.lr, eps=1e-8)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=0,
num_training_steps=len(dataloader_train)*args.epochs)
best_loss = None
best_model = None
for epoch in range(1, args.epochs + 1):
epoch_start_time = time.time()
train_loss = train(dataloader_train)
val_loss, predictions, true_vals = evaluate(dataloader_validation)
val_f1, val_f1_w, val_f1_mac = f1_score_func(true_vals, predictions)
epoch_time_elapsed = time.time() - epoch_start_time
print('Epoch: {}, Training Loss: {:.4f}, Validation Loss: {:.4f} '.format(epoch, train_loss, val_loss) + f'F1: {val_f1}, weighted F1: {val_f1_w}, macro F1: {val_f1_mac}')
with open(outfile, "a+") as f:
s = f.write('Epoch: {}, Training Loss: {:.4f}, Validation Loss: {:.4f} '.format(epoch, train_loss, val_loss) + f'F1: {val_f1}, weighted F1: {val_f1_w}, macro F1: {val_f1_mac}' + "\n")
#if not best_loss or val_f1_w < best_loss:
if not best_loss or val_loss < best_loss:
#best_model = model # Not needed here
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(args.msave) # transformers save
tokenizer.save_pretrained(args.msave)
best_loss = val_loss