-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVaspToolX.py
784 lines (729 loc) · 29.3 KB
/
VaspToolX.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
#!/usr/bin/python3
# -*- coding: UTF-8 -*-
########### script to extract data from PROCAR ############
# Input file : PROCAR, 278 #
# KPOINTS, #
# POSCAR, fermi.dat #
########### script to extract data from EIGENVAL ##########
# Input file : EIGENVAL,(soc,nosoc.megnetic) #
# KPOINTS, #
# POSCAR, fermi.dat #
# KPOINTS.DFT(HSE), #
# run command: python3.4 VaspToolX.py #
# Author : Leiwang updata 2019/07/19 #
###########################################################
# The version copy from ubuntu
# note that the format of fermi.dat
# ISMEAR = 0; SIGMA = 0.01 broadening in eV -4-tet -1-fermi 0-gaus
# E-fermi : 7.0717 XC(G=0): -11.2821 alpha+bet :-12.3742
# creat it by : grep fermi OUTCAR > fermi.dat
#import numpy as np
#$from sympy import *
import math
import os
pi = math.pi
sqrt = math.sqrt
# used to read data from file
def read_data(filename):
with open(filename, 'r') as f:
content = f.readlines()
return content
# used to write data to file
def write2txt(filename, data):
f = open(filename, 'a')
f.write(data + "\n")
f.close()
#read fermi level
def fermienergy(fermi):
efermi_tem = read_data(fermi)
efermi0 = efermi_tem[1]
efermi = efermi0.split()
efermi_final = efermi[2]
return efermi_final
# tranfer real space lattice a1 a2 a3 to reciprocal space lattice b1 b2 b3
def real_to_reciprocal(lines0):
a1 = lines0[2]
a2 = lines0[3]
a3 = lines0[4]
a1 = a1.split()
a2 = a2.split()
a3 = a3.split()
#print(len(a1))
#print(a1[0])
A = [[],[],[]]
A[0].append(a1[0])
A[0].append(a1[1])
A[0].append(a1[2])
A[1].append(a2[0])
A[1].append(a2[1])
A[1].append(a2[2])
A[2].append(a3[0])
A[2].append(a3[1])
A[2].append(a3[2])
#print(A)
volume = (float(a1[0])*float(a2[1])*float(a3[2])+float(a1[1])*float(a2[2])*float(a3[0])
+float(a1[2])*float(a2[0])*float(a3[1])-float(a1[0])*float(a2[2])*float(a3[1])
-float(a1[1])*float(a2[0])*float(a3[2])-float(a1[2])*float(a2[1])*float(a3[0]))
b=[[],[],[]]
c=[]
for i in (0,1,2):
if i==0:
j = 1
k = 2
elif i==1:
j = 2
k = 0
else:
j = 0
k = 1
c.append(float(A[j][1])*float(A[k][2])-float(A[j][2])*float(A[k][1]))
c.append(float(A[j][2])*float(A[k][0])-float(A[j][0])*float(A[k][2]))
c.append(float(A[j][0])*float(A[k][1])-float(A[j][1])*float(A[k][0]))
#print (c)
for l in (0,1,2):
bx = 2*pi*float(c[l])/volume
b[i].append(bx)
#print(b[i])
del c[:]
return b
# calculate the distance between two point in k space
def L_in_kspace(ary1,ary2,b):
# get first point
b1=[[],[],[]]
b2=[[],[],[]]
b3=[[],[],[]]
b1[0].append(b[0][0]*ary1[0])
b1[0].append(b[0][1]*ary1[0])
b1[0].append(b[0][2]*ary1[0])
b1[1].append(b[1][0]*ary1[1])
b1[1].append(b[1][1]*ary1[1])
b1[1].append(b[1][2]*ary1[1])
b1[2].append(b[2][0]*ary1[2])
b1[2].append(b[2][1]*ary1[2])
b1[2].append(b[2][2]*ary1[2])
#print (b1)
# get second point
b2[0].append(b[0][0]*ary2[0])
b2[0].append(b[0][1]*ary2[0])
b2[0].append(b[0][2]*ary2[0])
b2[1].append(b[1][0]*ary2[1])
b2[1].append(b[1][1]*ary2[1])
b2[1].append(b[1][2]*ary2[1])
b2[2].append(b[2][0]*ary2[2])
b2[2].append(b[2][1]*ary2[2])
b2[2].append(b[2][2]*ary2[2])
#print (b2)
# get the vector first point to second point
b3[0].append(b2[0][0]-b1[0][0])
b3[0].append(b2[0][1]-b1[0][1])
b3[0].append(b2[0][2]-b1[0][2])
b3[1].append(b2[1][0]-b1[1][0])
b3[1].append(b2[1][1]-b1[1][1])
b3[1].append(b2[1][2]-b1[1][2])
b3[2].append(b2[2][0]-b1[2][0])
b3[2].append(b2[2][1]-b1[2][1])
b3[2].append(b2[2][2]-b1[2][2])
#print(b3)
# to get the mod of vector
kb1 = 1/(2*pi)*sqrt((b3[0][0]+b3[1][0]+b3[2][0])**2+(b3[0][1]+b3[1][1]+b3[2][1])**2+(b3[0][2]+b3[1][2]+b3[2][2])**2)
return kb1 #
# To calculate k mesh
def calcu_k_meth(lines0,lines1):
result = []
for line in lines1: #to read each line
line = line.strip() #去掉每行头尾空白
if not len(line) or line.startswith('#'): #判断是否是空行或注释行
continue #是的话,跳过不处理
result.append(line) #保存
mesh = int(result[1])
#print(mesh)
i = 4 # initial line
K_path = []
while i < len(result):
K_path.append(result[i])
i += 1
# get mesh
Nk_path = len(K_path)
#print(Nk_path)
L_k_tem = 0.0
L_k_mesh_list = []
h_k = [] # high symmetry point
for j in range(0,Nk_path,2):
p1 = K_path[j]
p1 = p1.split()
p3=[]
for char in p1:
char = float(char)
p3.append(char)
p2 = K_path[j+1]
p2 = p2.split()
p4=[]
for char in p2:
char = float(char)
p4.append(char)
#print(p3,p4)
reci = real_to_reciprocal(lines0)
#print (reci)
L_k = L_in_kspace(p3,p4,reci) # calculate the distance between two point in k space
for i in range(0,mesh,1):
L_k_mesh = (L_k)*i/(mesh-1)
L_k_mesh_list.append(L_k_mesh+L_k_tem)
h_k.append(L_k_tem)
L_k_tem = L_k_tem+L_k
returnterm=[]
returnterm.append(L_k_mesh_list)
returnterm.append(mesh)
return returnterm
# used to calculate high symmetry line
def high_symmetry_line(lines0,lines1):
k_mesh_reci0=calcu_k_meth(lines0,lines1)
k_mesh_reci1=k_mesh_reci0[0]
k_mesh = k_mesh_reci0[1]
kpoint_high_sym=[]
i=0
kpoint_high_sym.append(k_mesh_reci1[i])
while i <len(k_mesh_reci1):
i=i+k_mesh
kpoint_high_sym.append(k_mesh_reci1[i-1])
return kpoint_high_sym
# Deal with PROCAR file and get the orbital component
def project_orbit():
while True:
conform_file = str(input('To ensure POSCAR, PROCAR, KPOINTS, fermi.dat in current floder: Y/N'))
if 'Y' != conform_file :
print('please prepare POSCAR, PROCAR, KPOINTS ')
continue
else:
break
lines0 = read_data('POSCAR') #read POSCAR
lines1 = read_data('KPOINTS')
lines3 = read_data('PROCAR')
# begin to extract the orbit component from PROCAR
#print (lines0[5])
#while True:
#element = str(input('input the kind of element:'))
# if element not in lines0[5]:
# print('the element is not right, please input it again')
# continue
# else:
# break
# extract data in two mode soc or nosoc
#mode = int(input('spd input 1; s px py pz dxy dyz dz2 dxz dx2 input 2:')) # LORBIT
mode = 2
LSO = int(input('nosoc input 1; soc input 2:')) # LSORBIT
mag = int(input('nonmagnetic 1; magnetic 2:')) # ISPIN equal to 1 or 2
efermi = fermienergy('fermi.dat')
efermi = float(efermi)
#nbands = int(input('the index of band : '))
#filename = 'PROCAR.txt' # both .txt file and this script at same content, in this way you don't need to write the path
#print (lines[0],'\t',lines[1],'\t',lines[2],'\t',lines[3])
lines2 = lines3[1]
lines2 = lines2.split()
nk = int(lines2[3]) # read the number of kpoints from PROCAR
nb = int(lines2[7]) # read the number of bands from PROCAR
ni = int(lines2[11]) # read the number of ion from PROCAR
#print(len(lines))
print ('number of kpoints:',nk,'number of bands:',nb,'number of ion:',ni)
L_k_mesh_list = calcu_k_meth(lines0,lines1)
L_k_mesh_list=L_k_mesh_list[0]
if LSO ==1:
tb_betw=(ni+1)+4 # the number of line between two adjacent band in one k-block
else:
tb_betw=(ni+1)*4+4
N_A = 0
N_i = 0
Num_A = []
#if element in lines0[5]:
Element=lines0[5].split()
Num_A=lines0[6].split()
#print (Element)
#print (Num_A)
i = 0
while i< len(Element):
N_A = N_A + int(Num_A[i])
for m in range(0,mag,1):
#print('m',m)
for i_nb in range(0,nb,1): #bands
for i_nk in range(0,nk,1): #kpoints
#print(i)
nkblock = tb_betw*nb+3 # the number of line between two adjacent k-block, such k-points 1 and k-points 2
#print('nkblock:',nkblock)
k_tmp = lines3[3+i_nk*nkblock] # the fractional coordinate of k-points
k = k_tmp[19:52]
A = N_A-int(Num_A[N_i])+1
s = 0;p = 0;d = 0
px=0;py=0;pz=0;dxy=0;dyz=0;dxz=0;dx2=0;dz2=0
Energy = lines3[i_nk*nkblock+2+(tb_betw*(i_nb)+3)+m*(nk*nkblock+1)]
#print(Energy)
Energy = Energy.split()
energy = float(Energy[4])-efermi
#print(Energy)
if mode == 1:
for j in range(A,N_A+1,1): # To choose the line the atom that you choose located in
#print (j)
xx_tmp = lines3[i_nk*nkblock+2+(tb_betw*(i_nb)+3)+j+2+m*(nk*nkblock+1)] # the line include the atom that you choose under nk,nb
#print (xx_tmp)
xx = xx_tmp.split()
s = s + float(xx[1]) # s
#p = p + float(xx[2])+float(xx[3])+float(xx[4]) # py pz px
p = p + float(xx[2])+float(xx[3])+float(xx[4])
d = d + float(xx[5])+ float(xx[6])+float(xx[7])+float(xx[8])+float(xx[9]) # dxy dyz dz2 dxz dx2
#d = d + float(xx[5])+ float(xx[6])+float(xx[7])+float(xx[8])+float(xx[9])
#write2txt('band-spd-'+element+'.txt',str(i_nb+1)+'\t'+str(L_k_mesh_list[i_nk])+'\t'+str(energy)+'\t'+str(s)+'\t'+str(p)+'\t'+str(d))
write2txt('band-s-'+Element[i]+'.dat',str(L_k_mesh_list[i_nk])+'\t'+str(energy)+'\t'+str(s))
write2txt('band-pxpy-'+Element[i]+'.dat',str(L_k_mesh_list[i_nk])+'\t'+str(energy)+'\t'+str(p))
write2txt('band-d-'+Element[i]+'.dat',str(L_k_mesh_list[i_nk])+'\t'+str(energy)+'\t'+str(d))
else:
for j in range(A,N_A+1,1):
#print (j)
xx_tmp = lines3[i_nk*nkblock+5+tb_betw*(i_nb)+j+2+m*(nk*nkblock+1)]
#print (xx_tmp)
xx = xx_tmp.split()
s = s + float(xx[1])
px = px + float(xx[2])
py = py + float(xx[3])
pz = pz + float(xx[4])
dxy = dxy + float(xx[5])
dyz = dyz + float(xx[6])
dz2 = dz2 +float(xx[7])
dxz = dxz +float(xx[8])
dx2 = dx2 +float(xx[9])
write2txt('band-spxdx-'+Element[i]+'.dat',str(L_k_mesh_list[i_nk])+'\t'+str(energy)+'\t'+str(s)+'\t'+str(px)+'\t'+str(py)+'\t'+str(pz)+'\t'+str(dxy)+'\t'+str(dyz)+'\t'+str(dz2)+'\t'+str(dxz)+'\t'+str(dx2))
#write2txt('band-spxdx-'+element+'.dat',str(i_nb+1)+'\t'+str(L_k_mesh_list[i_nk])+'\t'+str(energy)+'\t'+str(s)+'\t'+str(px)+'\t'+str(py)+'\t'+str(pz)+'\t'+str(dxy)+'\t'+str(dyz)+'\t'+str(dz2)+'\t'+str(dxz)+'\t'+str(dx2))
if mode == 1:
#write2txt('band-spd-'+element+'.txt',str( )+'\t') # space
write2txt('band-s-'+Element[i]+'.dat',str( )+'\t')
write2txt('band-pxpy-'+Element[i]+'.dat',str( )+'\t')
write2txt('band-d-'+Element[i]+'.dat',str( )+'\t')
else:
write2txt('band-spxdx-'+Element[i]+'.dat',str( )+'\t')
i += 1
hsl=high_symmetry_line(lines0,lines1)
for i in range(len(hsl)):
write2txt('high-symmetry-line.dat',str(hsl[i])+'\t'+str(-30))
write2txt('high-symmetry-line.dat',str(hsl[i])+'\t'+str(30))
write2txt('high-symmetry-line.dat',' ')
write2txt('high-symmetry-line.dat',str(0)+'\t'+str(0))
write2txt('high-symmetry-line.dat',str(hsl[len(hsl)-1])+'\t'+str(hsl[0]))
project_orbit2()
def project_orbit2():
print('This part is used to operate the orbit data in PROCAR')
print('To choose the element')
structure = read_data('POSCAR')
print (structure[5])
element0 = str(input('input the kind of element:'))
element = element0.split()
Norbit = []
Name_ele = ''
N_el = 0
while N_el < len(element):
Name_ele=Name_ele+element[N_el]
N_el += 1
i = 0
Name_orb = ''
while i < len(element):
print ('1. s 2. py 3. pz 4.px 5. dxy 6. dyz 7.dz2 8. dxz 9. x2-y2')
Norbit0 = str(input('input the orbit of element'+'\t'+str(element[i])+'\t'+"""in format '1 2 3 4'"""))
Norbit = Norbit0.split()
Name_orb = ''
if len(Norbit) > 1:
No=0
while No < len(Norbit):
Name_orb=Name_orb+Norbit[No]
No += 1
else:
Name_orb=Norbit0
write2txt('projected_band'+Name_ele+Name_orb+'.dat','1. s 2. py 3. pz 4.px 5. dxy 6. dyz 7.dz2 8. dxz 9. x2-y2')
write2txt('projected_band'+Name_ele+Name_orb+'.dat','element : '+str(element[i])+'\t'+Norbit0)
i += 1
#print ('Nor',len(Norbit))
Ndatalines = 0
orbit_file0 = read_data('band-spxdx-'+element[0]+'.dat')
while Ndatalines < len(orbit_file0)-1:
component = 0
path = 0
energy=0
#print ('element',len(element))
orbit_file_line0 = orbit_file0[Ndatalines]
orbit0 = orbit_file_line0.split()
if len(orbit0)==0:
write2txt('projected_band'+Name_ele+Name_orb+'.dat',str('')+'\t')
Ndatalines += 1
N_el = 0
while N_el < len(element):
orbit_file = read_data('band-spxdx-'+element[N_el]+'.dat')
orbit_file_line = orbit_file[Ndatalines]
orbit = orbit_file_line.split()
path = orbit[0]
energy = orbit[1]
i=0
#print('orbit',len(Norbit))
while i < len(Norbit):
N = int(Norbit[i])+1
component = component + float(orbit[N])
i += 1
N_el += 1
Ndatalines += 1
#print ('index',Ndatalines)
write2txt('projected_band'+Name_ele+Name_orb+'.dat',str(path)+'\t'+str(energy)+'\t'+str(component)+'\t')
# used to read EIGENVAL file
def read_eigenval(lines3,nk,nb,mag):
eigenval_file = lines3
#print (eigenval_file[7])
i= 7
list_eigenval_total=[[0 for i in range(nk)] for j in range(nb)]
list_eigenval_up=[[0 for i in range(nk)] for j in range(nb)]
list_eigenval_down=[[0 for i in range(nk)] for j in range(nb)]
k=0
if mag ==1:
while i < len(eigenval_file):
i = i + 1 # add one line
for j in range(0,nb,1):
value = eigenval_file[i]
temp = value.split()
i +=1
if k==nk:
k=0
list_eigenval_total[j][k]=temp[1]
k+=1 # index of k points
i+=1 # add one line
return list_eigenval_total
else:
while i < len(eigenval_file):
i = i + 1 # add one line
for j in range(0,nb,1):
value = eigenval_file[i]
temp = value.split()
i +=1
if k==nk:
k=0
list_eigenval_up[j][k]=temp[1]
k+=1 # index of k points
i+=1 # add one line
i=7
k=0
while i < len(eigenval_file):
i = i + 1 # add one line
for j in range(0,nb,1):
value = eigenval_file[i]
temp = value.split()
i +=1
if k==nk:
k=0
list_eigenval_down[j][k]=temp[2]
k+=1 # index of k points
i+=1 # add one line
list = [list_eigenval_up,list_eigenval_down]
return list
# used to calculate normal band structure
def band_cal():
lines0 = read_data('POSCAR') #read POSCAR
lines1 = read_data('KPOINTS')
lines3 = read_data('EIGENVAL')
mag = int(input('nonmagnetic 1; magnetic (nosoc) 2:')) # ISPIN equal to 1 or 2
efermi = fermienergy('fermi.dat')
efermi = float(efermi)
lines2 = lines3[5]
lines2 = lines2.split()
num_k = int(lines2[1]) # read the number of kpoints from PROCAR
num_b = int(lines2[2]) # read the number of bands from PROCAR
print ('number of kpoints:',num_k,'number of bands:',num_b)
# extract data in two mode magnetic or no
if 1 == mag:
L_k_mesh_list = calcu_k_meth(lines0,lines1)
L_k_mesh_list=L_k_mesh_list[0]
list_eigen_val = read_eigenval(lines3,num_k,num_b,mag)
for ib in range(num_b):
for ik in range(num_k):
write2txt('bandstructure.dat',str(L_k_mesh_list[ik])+'\t'+str(float(list_eigen_val[ib][ik])-efermi))
write2txt('bandstructure.dat',' ')
hsl=high_symmetry_line(lines0,lines1)
for i in range(len(hsl)): # print High symmetry line
write2txt('bandstructure.dat',str(hsl[i])+'\t'+str(-30))
write2txt('bandstructure.dat',str(hsl[i])+'\t'+str(30))
write2txt('bandstructure.dat',' ')
write2txt('bandstructure.dat',str(0)+'\t'+str(0))
write2txt('bandstructure.dat',str(hsl[len(hsl)-1])+'\t'+str(hsl[0]))
elif 2==mag :
L_k_mesh_list = calcu_k_meth(lines0,lines1)
L_k_mesh_list=L_k_mesh_list[0]
list_eigen_val = read_eigenval(lines3,num_k,num_b,mag)
list_eigen_val_up = list_eigen_val[0]
list_eigen_val_down = list_eigen_val[1]
for ib in range(num_b):
for ik in range(num_k):
write2txt('bandstructure.dat',str(L_k_mesh_list[ik])+'\t'+str(float(list_eigen_val_up[ib][ik])-efermi))
write2txt('bandstructure.dat',' ')
for ib in range(num_b):
for ik in range(num_k):
write2txt('bandstructure.dat',str(L_k_mesh_list[ik])+'\t'+str(float(list_eigen_val_down[ib][ik])-efermi))
write2txt('bandstructure.dat',' ')
hsl=high_symmetry_line(lines0,lines1)
for i in range(len(hsl)): # print High symmetry line
write2txt('bandstructure.dat',str(hsl[i])+'\t'+str(-30))
write2txt('bandstructure.dat',str(hsl[i])+'\t'+str(30))
write2txt('bandstructure.dat',' ')
write2txt('bandstructure.dat',str(0)+'\t'+str(0))
write2txt('bandstructure.dat',str(hsl[len(hsl)-1])+'\t'+str(hsl[0]))
else:
print('incorrect mogmam')
# used to read the kpoints of HSE calculation
def read_hse_KPOINTS(lines1,lines_1):
result = []
for line in lines_1: #to read each line
line = line.strip() #去掉每行头尾空白
if not len(line) or line.startswith('#'): #判断是否是空行或注释行
continue #是的话,跳过不处理
result.append(line) #保存
mesh = int(result[1])
#print(mesh)
i = 4 # initial line
K_path = []
while i < len(result):
K_path.append(result[i])
i += 1
# get mesh
Nk_path = len(K_path)
list = [] # used to store the point on the high symmetry line
for j in range(0,Nk_path,2):
p1 = K_path[j]
p1 = p1.split()
p3=[]
for char in p1:
char = float(char)
p3.append(char)
p2 = K_path[j+1]
p2 = p2.split()
p4=[]
for char in p2:
char = float(char)
p4.append(char)
#print(p3,p4)
#print (reci)
# output k points
for i in range(mesh):
list_k = []
px = p3[0]-(p3[0]-p4[0])*(i)/(mesh-1)
py = p3[1]-(p3[1]-p4[2])*(i)/(mesh-1)
pz = p3[2]-(p3[2]-p4[2])*(i)/(mesh-1)
list_k.append(px)
list_k.append(py)
list_k.append(pz)
#print (list_k)
list.append(list_k)
#print (list)
# compare with HSE mesh
k_mesh_hse = []
for i in range(3,len(lines1),1):
kp0=lines1[i]
kp1 = kp0.split()
if kp1[3] == '0':
#print (kp1)
k_mesh_hse.append(kp1)
#print (len(list),len(k_mesh_hse),k_mesh_hse)
#print(list)
com_num = [] # used to collect compare number
list_temp = list
k=0
j=0
for i in range(len(k_mesh_hse)):
#print ('i',i)
while j<len(list):
com_hse_kx = k_mesh_hse[i][0]
com_hse_ky = k_mesh_hse[i][1]
com_dft_kx = list_temp[j][0]
com_dft_ky = list_temp[j][1]
#print(k_mesh_hse[i],list_temp[j])
if abs(float(com_hse_kx)-com_dft_kx) <= 0.00001 and abs(float(com_hse_ky)-com_dft_ky <= 0.00001):
com_num.append(j)
k=j
#print ('k',k)
break
j += 1
j=k+1
#print(len(com_num),com_num)
return com_num
# used to read EIGENVAL of HSE calculation
def read_hse_eigenval(lines3,nk,nb):
eigenval_file = lines3
i= len(eigenval_file)-nk*(nb+2)+1
list_eigenval_total=[[0 for i in range(nk)] for j in range(nb)]
k=0
#print (i,eigenval_file[i])
while i < len(eigenval_file):
i = i + 1 # add one line
for j in range(0,nb,1):
value = eigenval_file[i]
temp = value.split()
i +=1
if k==nk:
k=0
list_eigenval_total[j][k]=temp[1]
k+=1 # index of k points
i+=1 # add one line
return list_eigenval_total
# used to calculate hse band
def band_hse_cal():
lines0 = read_data('POSCAR') #read POSCAR
lines1 = read_data('KPOINTS')
lines3 = read_data('EIGENVAL')
print('be sure set correct number of kpoints in EIGENVAL file')
while True:
k_DFT = input('input KPOINTS.DFT in current floder (Y/N):')
if k_DFT != 'Y':
print('please input normal mode KPOINTS.DFT file')
else:
print ('OK')
break
lines_1 = read_data('KPOINTS.DFT')
print('1. normal mode input')
print('2. abnormal mode input')
mode = float(input())
efermi = fermienergy('fermi.dat')
efermi = float(efermi)
lines2 = lines3[5] # to get the number of band from EGIENVAL file
lines2 = lines2.split()
num_b = int(lines2[2])
k_mesh_hse_num = []
for i in range(3,len(lines1),1):
kp0=lines1[i]
kp1 = kp0.split()
if kp1[3] == '0':
#print (kp1)
k_mesh_hse_num.append(kp1)
num_k = len(k_mesh_hse_num) # read the number of kpoints from EIGENVAL
print(num_k)
print('number of kpoints:',num_k)
print('number of bands:',num_b)
# extract data in two mode magnetic or no
if mode == 1:
L_k_mesh_list = calcu_k_meth(lines0,lines_1)
L_k_mesh_list=L_k_mesh_list[0]
list_eigen_val = read_hse_eigenval(lines3,num_k,num_b)
for ib in range(num_b):
for ik in range(num_k):
write2txt('bandstructure.dat',str(L_k_mesh_list[ik])+'\t'+str(float(list_eigen_val[ib][ik])-efermi))
write2txt('bandstructure.dat',' ')
hsl=high_symmetry_line(lines0,lines_1)
for i in range(len(hsl)): # print High symmetry line
write2txt('bandstructure.dat',str(hsl[i])+'\t'+str(-30))
write2txt('bandstructure.dat',str(hsl[i])+'\t'+str(30))
write2txt('bandstructure.dat',' ')
write2txt('bandstructure.dat',str(0)+'\t'+str(0))
write2txt('bandstructure.dat',str(hsl[len(hsl)-1])+'\t'+str(hsl[0]))
else:
L_k_mesh_list = calcu_k_meth(lines0,lines_1)
L_k_mesh_list = L_k_mesh_list[0]
L_k_mesh_list_com = []
num = read_hse_KPOINTS(lines1,lines_1)
#print(len(num))
for i in range(len(num)):
#print(i,int(num[i]))
L_k_mesh_list_com.append(L_k_mesh_list[int(num[i])])
list_eigen_val = read_hse_eigenval(lines3,num_k,num_b)
for ib in range(num_b):
for ik in range(len(num)):
write2txt('bandstructure.dat',str(L_k_mesh_list_com[ik])+'\t'+str(float(list_eigen_val[ib][ik])-efermi))
write2txt('bandstructure.dat',' ')
hsl=high_symmetry_line(lines0,lines_1)
for i in range(len(hsl)): # print High symmetry line
write2txt('bandstructure.dat',str(hsl[i])+'\t'+str(-30))
write2txt('bandstructure.dat',str(hsl[i])+'\t'+str(30))
write2txt('bandstructure.dat',' ')
write2txt('bandstructure.dat',str(0)+'\t'+str(0))
write2txt('bandstructure.dat',str(hsl[len(hsl)-1])+'\t'+str(hsl[0]))
# used to calculate band structure
def bandstructure():
conform_file = str(input('To ensure POSCAR, EIGENVAL, KPOINTS, fermi.dat in current floder: Y/N'))
if 'Y' == conform_file :
print('please prepare POSCAR, EIGENVAL, KPOINTS ')
print('To choose the program that you want to use: ')
print('1. normal band')
print('2. HSE band')
choose_mode = str(input())
if '1' ==choose_mode:
band_cal()
else:
band_hse_cal()
def band_kpoint_PROCAR():
LSO = int(input('nosoc 1 or soc 2'))
ONE_kpoint = int(input('input one k-point'))
SOME_bands0 = str(input('input bands'))
SOME_bands=SOME_bands0.split()
procar = read_data('PROCAR')
procar_line2 = procar[1]
kpoints_bands_ions = procar_line2.split()
kpoints = int(kpoints_bands_ions[3])
bands = int(kpoints_bands_ions[7])
ions = int(kpoints_bands_ions[11])
print ('number of kpoints:',kpoints,'number of bands:',bands)
i=0
j=0
# To find the
procar_line=''
for procar_line in procar:
procar_line_detail = procar_line.split()
if 'k-point ' in procar_line and ONE_kpoint == int(procar_line_detail[1]) :
#print (procar_line_detail[1])
j=i
i+=1
kpoint_detail=[]
block = 2+bands*(4+(ions+1)*(LSO**2))-1
#print (j)
for i in range(j-1,j+block-1,1):
kpoint_detail.append(procar[i])
write2txt('procar_bands_kpoint'+str(ONE_kpoint)+'.dat','k-points :'+'\t'+str(ONE_kpoint))
write2txt('procar_bands_kpoint'+str(ONE_kpoint)+'.dat','bands :'+'\t'+str(SOME_bands0))
ORBIT =procar[j+4]
ORBIT = ORBIT[:-1]
write2txt('procar_bands_kpoint'+str(ONE_kpoint)+'.dat',ORBIT)
i=0
k=0
#print (kpoint_detail)
while i < len(SOME_bands):
j=0
for component_line in kpoint_detail:
component=component_line.split()
if 'band ' in component_line and str(SOME_bands[i]) == component[1]:
k=j
j+=1
#print (j)
i+=1
bandsx=kpoint_detail[k+ions+3]
bandsx=bandsx[:-1]
write2txt('procar_bands_kpoint'+str(ONE_kpoint)+'.dat',bandsx)
write2txt('procar_bands_kpoint'+str(ONE_kpoint)+'.dat','') #empty line
i=0
while i < len(SOME_bands):
j=0
for component_line in kpoint_detail:
component=component_line.split()
if 'band ' in component_line and str(SOME_bands[i]) == component[1]:
k=j
for x in range(k-1,k+ions+4,1):
bandsx=kpoint_detail[x]
bandsx=bandsx[:-1]
write2txt('procar_bands_kpoint'+str(ONE_kpoint)+'.dat',bandsx)
j+=1
i+=1
# used to choose the mode you want to calculate
while True:
print('To choose the program that you want to use:')
print('1. project orbit (step1)')
print('2. project orbit (step2)')
print('3. band structure')
print('4. the component of some bands at one k-point')
print('5. quit')
project = str(input())
if '1' == project :
print('you are performing a project-orbit program now.')
project_orbit()
continue
elif project == '2':
project_orbit2()
elif project == '3':
bandstructure()
elif project == '4':
band_kpoint_PROCAR()
else:
break