-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathget_csv_data.py
101 lines (90 loc) · 6.99 KB
/
get_csv_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from numpy import genfromtxt
import numpy as np
#import scipy.io
class HandleData(object):
def __init__(self, total_data, data_per_angle, num_angles):
self.total_data=total_data
self.data_per_angle=data_per_angle
self.num_angles = num_angles
self.current_point = 0
self.data_set = np.zeros((self.total_data, 4), dtype=np.float32)
self.label_set = np.zeros((self.total_data, self.num_angles), dtype=np.float32)
def onehot_encode(self,number):
encoded_no = np.zeros(self.num_angles, dtype=np.float32)
if number < self.num_angles:
encoded_no[number] = 1
return encoded_no
def next_batch(self,batch_size):
# print("start : " + str(self.current_point))
if self.current_point == self.total_data:
self.current_point = 0
start = self.current_point
end = start + batch_size
return_data = self.data_set[start:end]
return_label = self.label_set[start:end]
self.current_point=end
# print(return_data)
# print("end : " + str(self.current_point))
return return_data,return_label
def get_synthatic_data(self,test_data):
if test_data is False:
# x_0 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data\experiment_0deg_ratios.csv', delimiter=',', dtype=np.float32)*100
# x_45 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data\experiment_45deg_ratios.csv',delimiter=',', dtype=np.float32) * 100
# x_90 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data\experiment_90deg_ratios.csv', delimiter=',', dtype=np.float32)*100
# x_135 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data\experiment_135deg_ratios.csv',delimiter=',', dtype=np.float32) * 100
# x_180 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data\experiment_180deg_ratios.csv', delimiter=',', dtype=np.float32)*100
# x_225 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data\experiment_225deg_ratios.csv',delimiter=',', dtype=np.float32) * 100
# x_270 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data\experiment_270deg_ratios.csv', delimiter=',', dtype=np.float32)*100
# x_315 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data\experiment_315deg_ratios.csv',delimiter=',', dtype=np.float32) * 100
x_0 = genfromtxt('./Dround_Data_New/Nomalized/deg_0_normalize.csv', delimiter=',', dtype=np.float32)
x_45 = genfromtxt('./Dround_Data_New/Nomalized/deg_45_normalize.csv',delimiter=',', dtype=np.float32)
x_90 = genfromtxt('./Dround_Data_New/Nomalized/deg_90_normalize.csv', delimiter=',', dtype=np.float32)
x_135 = genfromtxt('./Dround_Data_New/Nomalized/deg_135_normalize.csv',delimiter=',', dtype=np.float32)
x_180 = genfromtxt('./Dround_Data_New/Nomalized/deg_180_normalize.csv', delimiter=',', dtype=np.float32)
x_225 = genfromtxt('./Dround_Data_New/Nomalized/deg_225_normalize.csv',delimiter=',', dtype=np.float32)
x_270 = genfromtxt('./Dround_Data_New/Nomalized/deg_270_normalize.csv', delimiter=',', dtype=np.float32)
x_315 = genfromtxt('./Dround_Data_New/Nomalized/deg_315_normalize.csv',delimiter=',', dtype=np.float32)
elif test_data is True:
# x_0 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data_test\experiment_0deg_ratios_test.csv', delimiter=',', dtype=np.float32)*100
# x_45 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data_test\experiment_45deg_ratios_test.csv',delimiter=',', dtype=np.float32) * 100
# x_90 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data_test\experiment_90deg_ratios_test.csv', delimiter=',', dtype=np.float32)*100
# x_135 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data_test\experiment_135deg_ratios_test.csv',delimiter=',', dtype=np.float32) * 100
# x_180 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data_test\experiment_180deg_ratios_test.csv', delimiter=',', dtype=np.float32)*100
# x_225 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data_test\experiment_225deg_ratios_test.csv',delimiter=',', dtype=np.float32) * 100
# x_270 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data_test\experiment_270deg_ratios_test.csv', delimiter=',', dtype=np.float32)*100
# x_315 = genfromtxt(r'C:\Users\Lahiru\Desktop\Work\Drone\DOA\Dround_Data_test\experiment_315deg_ratios_test.csv',delimiter=',', dtype=np.float32) * 100
x_0 = genfromtxt('./Dround_Data_New/Nomalized_test/deg_0_normalize.csv', delimiter=',', dtype=np.float32)
x_45 = genfromtxt('./Dround_Data_New/Nomalized_test/deg_45_normalize.csv',delimiter=',', dtype=np.float32)
x_90 = genfromtxt('./Dround_Data_New/Nomalized_test/deg_90_normalize.csv', delimiter=',', dtype=np.float32)
x_135 = genfromtxt('./Dround_Data_New/Nomalized_test/deg_135_normalize.csv',delimiter=',', dtype=np.float32)
x_180 = genfromtxt('./Dround_Data_New/Nomalized_test/deg_180_normalize.csv', delimiter=',', dtype=np.float32)
x_225 = genfromtxt('./Dround_Data_New/Nomalized_test/deg_225_normalize.csv',delimiter=',', dtype=np.float32)
x_270 = genfromtxt('./Dround_Data_New/Nomalized_test/deg_270_normalize.csv', delimiter=',', dtype=np.float32)
x_315 = genfromtxt('./Dround_Data_New/Nomalized_test/deg_315_normalize.csv',delimiter=',', dtype=np.float32)
else:
x_45 = genfromtxt('./Dround_Data_New/Nomalized_test/test_45_normalize.csv',delimiter=',', dtype=np.float32)
data_matrix = np.array([x_45], np.float32)
for i in range(0, 1):
for j in range(0, len(x_45)):
"add one hot"
"add data"
self.label_set[i * len(x_45) + j] = self.onehot_encode(1)
self.data_set[i * len(x_45) + j] = data_matrix[i][j]
return self.data_set, self.label_set
data_matrix = np.array([x_0,x_45, x_90,x_135, x_180,x_225, x_270,x_315], np.float32)
# data_matrix = np.array([x_0, x_90, x_180, x_270], np.float32)
# data_matrix = data_matrix
# print(data_matrix[1][1])
# tmp = np.zeros((self.num_angles, self.data_per_angle, 4), dtype=np.float32)
for i in range(0, self.num_angles):
for j in range(0, self.data_per_angle):
"add one hot"
"add data"
self.label_set[i * self.data_per_angle + j] = self.onehot_encode(i)
self.data_set[i * self.data_per_angle + j] = data_matrix[i][j]
return self.data_set ,self.label_set
# data = HandleData(total_data=800,data_per_angle=200,num_angles=4)
# a,b = data.get_synthatic_data()
#
# print(a[750],b[750])
# print(x_270[150])