-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNK_FTPL_WITH_K.jl
369 lines (297 loc) · 11.1 KB
/
NK_FTPL_WITH_K.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
function solve_system_quad_FTPL(;params)
function static_funct(p)
@unpack σ, ψ, A, α, γ,κ = p
function ι(q)
return((q-1.0)/κ)
end
function ℓ(C,k,q)
return(k*((C/k+ι(q))/A)^(1.0/(1.0-α)))
end
function w(C,k,q)
return (ℓ(C,k,q)^(ψ)*C^(γ))
end
function ν_k(C,k,q)
return((1.0/q)*(α/(1.0-α))*w(C,k,q)*(ℓ(C,k,q)/k))
end
function χ(C,k,q)
return((w(C,k,q)/(1.0-α))^(1.0-α)*(q*ν_k(C,k,q)/α)^(α))
end
function Y(C,k,q)
return(A*(k)^(α)*(ℓ(C,k,q))^(1-α))
end
return (ι=ι,ℓ=ℓ,w=w,ν_k=ν_k,χ=χ,Y=Y)
end
function NK!(du,u,p,t)
@unpack σ, ϵ, θ, ψ, ρ̄, θᵨ, θᵢ, κ, δ, A, χₙ, S, ind_Taylor, i_target, ϕ_FTPL,long_term = p
@unpack ι, ℓ, w, ν_k, χ, Y = static_funct(p)
q = u[1]
C = u[2]
k = u[3]
π = u[4]
ρ = u[5]
i = u[6]
v = u[7]
s = u[8]
Q = u[9]
y=1.0/Q
du[1] = q*(i-π+(ι(q)+κ*(ι(q))^(2.0)/2.0)/q-ι(q)-ν_k(C,k,q))
du[2] = σ*C*(i-π-ρ)
du[3] = ι(q)*k
du[4] = π*((1.0-σ)*(i-π)+σ*ρ)-((ϵ-1.0)/θ)*(χ(C,k,q)/χₙ-1.0)
du[5] = -θᵨ*(ρ-ρ̄)
du[6] = -θᵢ*(i-ϕ_FTPL*π-ρ̄)*ind_Taylor
du[7] = v*(i-π) -s
du[8] = S*du[7]
du[9] = Q*(i-y)*long_term
end
function SS(p)
@unpack α, γ, σ, ϵ, θ, ψ, ρ̄, θᵨ, θᵢ, κ, δ, A, S, ind_Taylor, i_target, ϕ_FTPL, s₀ = p
@unpack Y = static_funct(p)
q_ss = 1.0
ρ_ss = ρ̄
i_ss = ρ̄*ind_Taylor +(1-ind_Taylor)*i_target
π_ss = i_ss - ρ_ss
Q_ss = 1/i_ss
k_c = (α/(ρ̄))*((ϵ-1.0)/ϵ)*(1.0+θ/(ϵ-1.0)*ρ̄*π_ss)
k_l = (A*k_c)^(1.0/(1.0-α))
k_ss = (ρ̄*((1-α)/α)*(k_l)^(1+ψ)*(k_c)^(γ))^(1/(ψ+γ))
C_ss = k_ss/k_c
Y_ss = Y(C_ss,k_ss,q_ss)
v_ss = s₀*Y_ss/(i_ss-π_ss-S)
s_ss = s₀*Y_ss + S*v_ss
return(π_ss=π_ss,
C_ss = C_ss,
q_ss = q_ss,
k_ss = k_ss,
ρ_ss = ρ_ss,
i_ss = i_ss,
ℓ_ss = k_ss/k_l,
ι_ss = 0.0,
v_ss = v_ss,
s_ss = s_ss,
Q_ss = Q_ss)
end
function u_0(p)
@unpack q_ss, C_ss, k_ss, π_ss, i_ss,v_ss,s_ss,Q_ss = SS(p)
@unpack init_ρ = p
return ([q_ss,C_ss,k_ss,π_ss,init_ρ,i_ss,v_ss,s_ss,Q_ss])
end
p = (σ=params.σ,
ϵ = params.ϵ,
θ = params.θ,
ψ = params.ψ,
ρ̄ = params.ρ̄,
θᵨ = params.θᵨ,
θᵢ = params.θᵢ,
κ = params.κ,
δ = params.δ,
A = params.A,
χₙ = params.χₙ,
γ = params.γ,
α = params.α,
init_ρ = params.init_ρ,
S = params.S,
i_target = params.i_target,
ind_Taylor = params.ind_Taylor,
ϕ_FTPL = params.ϕ_FTPL,
s₀ = params.s₀,
long_term = params.long_term)
function bc1!(residual,u,p,t)
@unpack q_ss, C_ss, k_ss, π_ss, ρ_ss, i_ss,v_ss,s_ss,Q_ss = SS(p)
@unpack init_ρ,long_term = p
residual[1] = u[end][1]- q_ss
residual[2] = u[end][2]- C_ss
residual[3] = u[end][7]- v_ss
residual[4] = u[end][8]- s_ss
residual[5] = u[1][3]- k_ss
residual[6] = u[1][5]- init_ρ
residual[7] = u[1][6]- i_ss
residual[8] = u[1][7]- v_ss*(1+(u[1][9]-Q_ss)/Q_ss)
residual[9] = u[end][9]- Q_ss
end
bvp1 = TwoPointBVProblem(NK!, bc1!, u_0(p), (0.0,params.T),(p))
u = solve(bvp1, MIRK4(), dt=params.dt)
function result(u,p)
@unpack δ = p
@unpack q_ss, C_ss, k_ss, π_ss, i_ss, ℓ_ss, ι_ss, ρ_ss,v_ss,s_ss,Q_ss = SS(p)
q = @view u[1,:][:]
C = @view u[2,:][:]
k = @view u[3,:][:]
π = @view u[4,:][:]
i = @view u[6,:][:]
v = @view u[7,:][:]
s = @view u[8,:][:]
Q = @view u[9,:][:]
n = size(u)[1]
sol1 = similar(zeros(n+3,size(u)[2]))
sol1[1:n-3,:] = @view u[2:n-2,:]
@unpack ι, ℓ, w, ν_k, χ, Y = static_funct(p)
sol1[3,:] = sol1[3,:].+1
sol1[n-3,:] = ι.(q) .+ δ
sol1[n-2,:] = ℓ.(C,k,q)
sol1[n-1,:] = Y.(C,k,q)
sol1[n,:] = i.-π
sol1[n+1,:] = v
sol1[n+2,:] = s
sol1[n+3,:] = 1.0./Q
SS_vec = similar(sol1[:,1])
SS_vec[1] = C_ss
SS_vec[2] = k_ss
SS_vec[3] = π_ss +1.0
SS_vec[4] = ρ_ss
SS_vec[5] = i_ss
SS_vec[6] = ι_ss+ δ
SS_vec[7] = ℓ_ss
SS_vec[8] = Y.(C_ss,k_ss,q_ss)
SS_vec[9] = i_ss-π_ss
SS_vec[10] = v_ss
SS_vec[11] = s_ss
SS_vec[12] = 1.0/Q_ss
return(SS_vec=SS_vec,sol1=sol1)
end
@unpack sol1, SS_vec = result(u,p)
return (sol=sol1,SS=SS_vec,t=u.t)
end
@unpack T, dt = pp
function plot_IRF_quad_FTPL(;var =["C","k","\\pi","\\rho","i","\\iota","\\ell","Y","r","v","s","y"],
solution,T_end=T)
N_end = T_end/dt+1
val = ["C","k","\\pi","\\rho","i","\\iota","\\ell","Y","r","v","s","y"]
pos = (zeros(length(var)))
for k in 1: length(var)
pos[k] = findfirst(isequal(var[k]),val)
end
pos = round.(Int, pos)
val = val[pos]
lab = [latexstring("\$\\widehat{{$(u)}}_{t}\$") for u in val]
lab = reshape(lab,(1,length(val)))
SS = solution.SS
dev = ((solution.sol.-SS)./SS)*100
pp = [dev[k,1:round(Int,N_end)] for k in pos]
p=plot(solution.t[1:round(Int,N_end)],pp,
label = lab,
xlabel = L"t",
legendfontsize = 8,
ylabel = L"\%",
legend = :outertopright,
palette = :tab20)
display(p)
return(p)
end
function compute_dev_quad_FTPL(;solution,n,T)
SS = solution.SS[n]
dev = (((@view solution.sol[n,:]).-SS)./SS)*100
N = T/dt+1
cum = sum(@view dev[1:floor(Int,N)])
return (cum)
end
function plot_θ_cum_quad_FTPL(;var="Y",θ_range=range(.1,500,length=5),
T_range=[0,T],κ_range=[3,30,300],ind_Taylor=pp.ind_Taylor,ϕ_FTPL=pp.ϕ_FTPL,params=pp,long_term=pp.long_term)
@unpack T, dt = pp
val = ["C","k","\\pi","\\rho","i","\\iota","\\ell","Y","r","v","s","y"]
n = findfirst(isequal(var), val)
N = length(T_range)*length(κ_range)
lab = [latexstring("\$T={$(T)},\\kappa={$(κ)}\$") for (T,κ) in Iterators.product(T_range, κ_range)][:]
lab = reshape(lab,1,N)
y = similar(zeros(length(θ_range),N))
j = 0
for θ in θ_range
j = j+1
k = 0
for κ in κ_range
solution = solve_system_quad_FTPL(;params=define_env(θ=θ,κ=κ,T=T,N_t=T/dt,ϕ_FTPL=ϕ_FTPL,ind_Taylor=ind_Taylor,long_term=long_term))
for T in T_range
k = k+1
y[j,k] = compute_dev_quad_FTPL(;solution=solution,n=n,T=T)
end
end
end
lines = [:dash for k in 1:N]
for k in 1: floor(Int,N/2)
lines[2*k] =:solid
end
lines = reshape(lines,1,N)
p = plot(θ_range,
y,
label = lab,
xlabel = L"\theta",
ylabel = latexstring("\$\\sum_{t=0}{T}\\widehat{{$(val[n])}}_{t}\\left(\\%,\\phi=$(ϕ_FTPL)\\right)\$"),
legendfontsize = 7,
palette = palette([:blue,:red],N),
linestyle = lines,
legend = :outertopright)
savefig(p,"theta_cum_$(ϕ_FTPL)_quad_FTPL_K.svg")
display(p)
end
function plot_all_longterm(;var =["C","k","\\pi","i","\\iota","\\ell","Y","r","v","s","y"],pp=pp)
val = ["C","k","\\pi","\\rho","i","\\iota","\\ell","Y","r","v","s","y"]
pos = (zeros(length(var)))
for k in 1: length(var)
pos[k] = findfirst(isequal(var[k]),val)
end
pos = round.(Int, pos)
val = val[pos]
lab = [latexstring("\$\\widehat{{$(u)}}_{t}\$") for u in val]
lab = reshape(lab,(1,length(val)))
p=plot(layout = length(var),title= lab,size = (1800,1000),palette= :Dark2_4)
style=[:dash, :dot, :dash, :dot]
j=0
for Taylor in [0.0,1.0]
for l in [0.0,1.0]
j=j+1
param=define_env(T=pp.T,N_t=pp.T/pp.dt,ind_Taylor=1.0,ϕ_FTPL=pp.ϕ_FTPL*Taylor,S=0.0
,long_term=l)
solution =solve_system_quad_FTPL(params=param)
SS = solution.SS
dev = ((solution.sol.-SS)./SS)*100
plot = [dev[k,:] for k in pos]
label=latexstring("\$LD=$(param.long_term),\\phi=$(param.ϕ_FTPL)\$")
plot!(solution.t,plot,
xlabel = L"t",
legendfontsize = 7,
ylabel = L"\%",
label = label,
legend = :outertopright,
linestyle = style[j])
end
end
savefig(p,"long_term_FTPL_with_K.svg")
display(p)
return(p)
end
function plot_all_S(;var =["C","k","\\pi","i","\\iota","\\ell","Y","r","v","s","y"],pp=pp)
val = ["C","k","\\pi","\\rho","i","\\iota","\\ell","Y","r","v","s","y"]
pos = (zeros(length(var)))
for k in 1: length(var)
pos[k] = findfirst(isequal(var[k]),val)
end
pos = round.(Int, pos)
val = val[pos]
lab = [latexstring("\$\\widehat{{$(u)}}_{t}\$") for u in val]
lab = reshape(lab,(1,length(val)))
p=plot(layout = length(var),title= lab,size = (1800,1000),palette= :Dark2_4)
style=[:dash, :dot, :dash, :dot]
j=0
for Taylor in [0.0,1.0]
for S in [0.0,1.0]
j=j+1
param=define_env(T=pp.T,N_t=pp.T/pp.dt,ind_Taylor=Taylor,ϕ_FTPL=pp.ϕ_FTPL*Taylor,S=S
,long_term=0.0)
solution =solve_system_quad_FTPL(params=param)
SS = solution.SS
dev = ((solution.sol.-SS)./SS)*100
plot = [dev[k,:] for k in pos]
label=latexstring("\$S=$(param.S),\\phi=$(param.ϕ_FTPL)\$")
plot!(solution.t,plot,
xlabel = L"t",
legendfontsize = 7,
ylabel = L"\%",
label = label,
legend = :outertopright,
linestyle = style[j])
end
end
savefig(p,"S_shape_with_K.svg")
display(p)
return(p)
end