-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmct.cu
231 lines (211 loc) · 8 KB
/
mct.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#include "mct.cuh"
#include "common.h"
#include <assert.h>
#include <malloc.h>
#include <stdio.h>
__device__ __host__ void swap_ptr(xs_data_in_t **p1, xs_data_in_t **p2)
{
xs_data_in_t *tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
__global__ void kernel_mct_inverse_rct(xs_image_t *gpu_image, uint32_t len)
{
const uint32_t tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < len)
{
xs_data_in_t *c0 = gpu_image->comps_array[0] + tid;
xs_data_in_t *c1 = gpu_image->comps_array[1] + tid;
xs_data_in_t *c2 = gpu_image->comps_array[2] + tid;
const xs_data_in_t tmp = *c0 - ((*c1 + *c2) >> 2);
*c0 = tmp + *c2;
*c2 = tmp + *c1;
*c1 = tmp;
++c0;
++c1;
++c2;
}
}
void gpu_mct_inverse_rct(xs_image_t *image, xs_image_t *gpu_image)
{
const uint32_t len = image->width * image->height;
const int block_size = BLOCK_SIZE;
const int grid_size = (len + block_size - 1) / block_size;
kernel_mct_inverse_rct<<<grid_size, block_size>>>(gpu_image, len);
}
__device__ __host__ void mct_tetrix_access(xs_image_t *im, const int c, const int Cf, const int Ct, const int rx, const int ry, const int x, const int y, xs_data_in_t *ret)
{
// Stupid magic.
assert(c >= 0 && c <= 3);
assert(Cf == 0 || Cf == 3);
assert(Ct == 0 || Ct == 1);
assert(rx >= -1 && rx <= 1);
assert(ry >= -1 && ry <= 1);
int t_x = rx + ((Ct + c) & 1);
int t_y = ry + (((~(c)) >> 1) & 1);
assert(t_x >= -1 && t_x <= 2);
assert(t_y >= -1 && t_y <= 2);
const int k = ((((~(t_y)) << 1) & 2) | (((Ct) ^ (t_x)) & 1));
assert(k >= 0 && k <= 3);
if (Cf == 3)
{
t_y &= 1;
}
t_x += x << 1;
t_y += y << 1;
if (t_x < 0)
{
t_x += 2;
}
else if (t_x >= (im->width << 1))
{
t_x -= 2;
}
if (t_y < 0)
{
t_y += 2;
}
else if (t_y >= (im->height << 1))
{
t_y -= 2;
}
t_x >>= 1;
t_y >>= 1;
assert(t_x >= 0 && t_x < im->width);
assert(t_y >= 0 && t_y < im->height);
// assert(mct_tetrix_access_slow(im, c, Cf, Ct, rx, ry, x, y) == (im->comps_array[k] + t_y * im->width + t_x));
*ret = im->comps_array[k][(size_t)t_y * (size_t)im->width + t_x];
}
__global__ void kernel_inverse_average(xs_image_t *gpu_image, int Cf, int Ct, int width, uint32_t len)
{
const uint32_t tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < len)
{
const int x = tid % width;
const int y = tid / width;
xs_data_in_t dtl, dtr, dbl, dbr;
mct_tetrix_access(gpu_image, 0, Cf, Ct, -1, -1, x, y, &dtl);
mct_tetrix_access(gpu_image, 0, Cf, Ct, 1, -1, x, y, &dtr);
mct_tetrix_access(gpu_image, 0, Cf, Ct, -1, 1, x, y, &dbl);
mct_tetrix_access(gpu_image, 0, Cf, Ct, 1, 1, x, y, &dbr);
gpu_image->comps_array[0][tid] -= (dtl + dtr + dbl + dbr) >> 3;
}
}
__global__ void kernel_inverse_delta(xs_image_t *gpu_image, int Cf, int Ct, int width, uint32_t len)
{
const uint32_t tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < len)
{
const int x = tid % width;
const int y = tid / width;
xs_data_in_t ytl, ytr, ybl, ybr;
mct_tetrix_access(gpu_image, 3, Cf, Ct, -1, -1, x, y, &ytl);
mct_tetrix_access(gpu_image, 3, Cf, Ct, 1, -1, x, y, &ytr);
mct_tetrix_access(gpu_image, 3, Cf, Ct, -1, 1, x, y, &ybl);
mct_tetrix_access(gpu_image, 3, Cf, Ct, 1, 1, x, y, &ybr);
gpu_image->comps_array[3][tid] += (ytl + ytr + ybl + ybr) >> 2;
}
}
__global__ void kernel_inverse_Y(xs_image_t *gpu_image, int Cf, int Ct, int e1, int e2, int width, uint32_t len)
{
const uint32_t tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < len)
{
const int x = tid % width;
const int y = tid / width;
xs_data_in_t bl, br, rt, rb;
mct_tetrix_access(gpu_image, 0, Cf, Ct, -1, 0, x, y, &bl);
mct_tetrix_access(gpu_image, 0, Cf, Ct, 1, 0, x, y, &br);
mct_tetrix_access(gpu_image, 0, Cf, Ct, 0, -1, x, y, &rt);
mct_tetrix_access(gpu_image, 0, Cf, Ct, 0, 1, x, y, &rb);
gpu_image->comps_array[0][tid] -= (((bl + br) << e2) + ((rt + rb) << e1)) >> 3;
xs_data_in_t bt, bb, rl, rr;
mct_tetrix_access(gpu_image, 3, Cf, Ct, 0, -1, x, y, &bt);
mct_tetrix_access(gpu_image, 3, Cf, Ct, 0, 1, x, y, &bb);
mct_tetrix_access(gpu_image, 3, Cf, Ct, -1, 0, x, y, &rl);
mct_tetrix_access(gpu_image, 3, Cf, Ct, 1, 0, x, y, &rr);
gpu_image->comps_array[3][tid] -= (((bt + bb) << e2) + ((rl + rr) << e1)) >> 3;
}
}
__global__ void kernel_inverse_CbCr(xs_image_t *gpu_image, int Cf, int Ct, int e1, int e2, int width, uint32_t len)
{
const uint32_t tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < len)
{
const int x = tid % width;
const int y = tid / width;
xs_data_in_t gl, gr, gt, gb;
mct_tetrix_access(gpu_image, 1, Cf, Ct, -1, 0, x, y, &gl);
mct_tetrix_access(gpu_image, 1, Cf, Ct, 1, 0, x, y, &gr);
mct_tetrix_access(gpu_image, 1, Cf, Ct, 0, -1, x, y, >);
mct_tetrix_access(gpu_image, 1, Cf, Ct, 0, 1, x, y, &gb);
gpu_image->comps_array[1][tid] += (gl + gr + gt + gb) >> 2;
mct_tetrix_access(gpu_image, 2, Cf, Ct, 0, -1, x, y, &gl);
mct_tetrix_access(gpu_image, 2, Cf, Ct, 0, 1, x, y, &gr);
mct_tetrix_access(gpu_image, 2, Cf, Ct, -1, 0, x, y, >);
mct_tetrix_access(gpu_image, 2, Cf, Ct, 1, 0, x, y, &gb);
gpu_image->comps_array[2][tid] += (gl + gr + gt + gb) >> 2;
}
}
__global__ void gpu_swap_image_ptr(xs_image_t *gpu_image)
{
const int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid == 0)
{
swap_ptr(&gpu_image->comps_array[0], &gpu_image->comps_array[2]);
swap_ptr(&gpu_image->comps_array[1], &gpu_image->comps_array[3]);
}
}
void gpu_mct_inverse_tetrix(xs_image_t *im, xs_image_t *gpu_image, const xs_cfa_pattern_t cfa_pattern, const xs_cts_parameters_t cts_parameters)
{
assert(im->ncomps == 4);
assert(im->sx[0] == im->sx[1] && im->sx[0] == im->sx[2] && im->sx[0] == im->sx[3]);
assert(im->sy[0] == im->sy[1] && im->sy[0] == im->sy[2] && im->sy[0] == im->sy[3]);
const int Cf = cts_parameters.Cf;
const int Ct = (cfa_pattern == XS_CFA_RGGB || cfa_pattern == XS_CFA_BGGR) ? 0 : 1;
const uint8_t e1 = cts_parameters.e1;
const uint8_t e2 = cts_parameters.e2;
// Inverse average.
const int len = im->height * im->width;
const int block_size = BLOCK_SIZE;
const int grid_size = (len + block_size - 1) / block_size;
kernel_inverse_average<<<grid_size, block_size>>>(gpu_image, Cf, Ct, im->width, len);
cudaDeviceSynchronize();
// Inverse delta.
kernel_inverse_delta<<<grid_size, block_size>>>(gpu_image, Cf, Ct, im->width, len);
cudaDeviceSynchronize();
// Inverse Y.
kernel_inverse_Y<<<grid_size, block_size>>>(gpu_image, Cf, Ct, e1, e2, im->width, len);
cudaDeviceSynchronize();
// Inverse CbCr.
kernel_inverse_CbCr<<<grid_size, block_size>>>(gpu_image, Cf, Ct, e1, e2, im->width, len);
cudaDeviceSynchronize();
// Reassign component order.
swap_ptr(&im->comps_array[0], &im->comps_array[2]);
swap_ptr(&im->comps_array[1], &im->comps_array[3]);
gpu_swap_image_ptr<<<1, 1>>>(gpu_image);
cudaDeviceSynchronize();
}
void gpu_mct_inverse_transform(xs_image_t *image, xs_image_t *gpu_image, const xs_config_parameters_t *p)
{
switch (p->color_transform)
{
case XS_CPIH_NONE:
{
break;
}
case XS_CPIH_RCT:
{
gpu_mct_inverse_rct(image, gpu_image);
break;
}
case XS_CPIH_TETRIX:
{
gpu_mct_inverse_tetrix(image, gpu_image, p->cfa_pattern, p->tetrix_params);
break;
}
default:
assert(!"Unknown color transform");
break;
}
}