forked from CoinCheung/pytorch-loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mish.py
145 lines (112 loc) · 3.86 KB
/
mish.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/python
# -*- encoding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.cuda.amp as amp
##
# version 1: use pytorch autograd
class MishV1(nn.Module):
def __init__(self):
super(MishV1, self).__init__()
def forward(self, feat):
return feat * torch.tanh(F.softplus(feat))
##
# version 2: use derived formula to compute grad
class MishFunctionV2(torch.autograd.Function):
@staticmethod
@amp.custom_fwd
def forward(ctx, feat):
# exp = torch.exp(feat)
# exp_plus = exp + 1
# exp_plus_pow = torch.pow(exp_plus, 2)
# tanhX = (exp_plus_pow - 1) / (exp_plus_pow + 1)
# out = feat * tanhX
# grad = tanhX + 4 * feat * exp * exp_plus / torch.pow(1 + exp_plus_pow, 2)
tanhX = torch.tanh(F.softplus(feat))
out = feat * tanhX
grad = tanhX + feat * (1 - torch.pow(tanhX, 2)) * torch.sigmoid(feat)
ctx.grad = grad
return out
@staticmethod
@amp.custom_bwd
def backward(ctx, grad_output):
grad = ctx.grad
grad *= grad_output
return grad
class MishV2(nn.Module):
def __init__(self):
super(MishV2, self).__init__()
def forward(self, feat):
return MishFunctionV2.apply(feat)
##
# version 3: write with cuda which requires less memory and can be faster
import mish_cpp
class MishFunctionV3(torch.autograd.Function):
@staticmethod
@amp.custom_fwd
def forward(ctx, feat):
ctx.feat = feat
return mish_cpp.mish_forward(feat)
@staticmethod
@amp.custom_bwd
def backward(ctx, grad_output):
feat = ctx.feat
return mish_cpp.mish_backward(grad_output, feat)
class MishV3(nn.Module):
def __init__(self):
super(MishV3, self).__init__()
def forward(self, feat):
return MishFunctionV3.apply(feat)
if __name__ == "__main__":
# import torchvision
# net = torchvision.models.resnet50(pretrained=True)
# sd = {k: v for k, v in net.state_dict().items() if k.startswith('conv1.') or k.startswith('bn1.')}
class Net(nn.Module):
def __init__(self, act='mishv1'):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 7, 2, 3)
self.bn1 = nn.BatchNorm2d(64)
if act == 'mishv1':
self.act1 = MishV1()
elif act == 'mishv2':
self.act1 = MishV2()
elif act == 'mishv3':
self.act1 = MishV3()
self.dense = nn.Linear(64, 10, bias=False)
self.crit = nn.CrossEntropyLoss()
# state = self.state_dict()
# state.update(sd)
# self.load_state_dict(state)
# torch.nn.init.constant_(self.dense.weight, 1)
def forward(self, feat, label):
feat = self.conv1(feat)
feat = self.bn1(feat)
feat = self.act1(feat)
feat = torch.mean(feat, dim=(2, 3))
logits = self.dense(feat)
loss = self.crit(logits, label)
return loss
net1 = Net(act='mishv1')
net2 = Net(act='mishv3')
net2.load_state_dict(net1.state_dict())
net1.cuda()
net2.cuda()
opt1 = torch.optim.SGD(net1.parameters(), lr=1e-1)
opt2 = torch.optim.SGD(net2.parameters(), lr=1e-1)
bs = 32
for i in range(2000):
inten = torch.randn(bs, 3, 224, 224).cuda().detach()
label = torch.randint(0, 10, (bs, )).cuda().detach()
loss1 = net1(inten, label)
opt1.zero_grad()
loss1.backward()
opt1.step()
loss2 = net2(inten, label)
opt2.zero_grad()
loss2.backward()
opt2.step()
if i % 200 == 0:
print('====')
print('loss diff: ', loss1.item() - loss2.item())
print('weight diff: ', torch.sum(torch.abs(net1.conv1.weight - net2.conv1.weight)).item())