forked from reerajput930/Algo-Tree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquick_sort.cpp
80 lines (63 loc) · 2.16 KB
/
quick_sort.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/*
QuickSort is a Divide and Conquer algorithm. It picks an element as a pivot and partitions the given array around the picked pivot. We'll pick the right-most element as the pivot in this implementation.
Partitioning is the main mechanism in quickSort. Provided the array and the element x of the array as a pivot, the target of the partitioning is to place x at its correct location as in the sorted array, and to place all the elements smaller than x, before x, and to place all the elements greater than x, after x.
*/
#include <iostream>
using namespace std;
int *quickSort(int *arr, int left_index, int right_index)
{
// Base Case
if (left_index >= right_index)
return arr;
int pivot = right_index, start = left_index, end = right_index;
right_index--;
// Partitioning
while (left_index <= right_index)
{
// Swapping the both in this case
if (arr[left_index] >= arr[pivot] && arr[pivot] >= arr[right_index])
{
int temp = arr[left_index];
arr[left_index] = arr[right_index];
arr[right_index] = temp;
}
if (arr[left_index] <= arr[pivot])
left_index++;
if (arr[pivot] <= arr[right_index])
right_index--;
}
// Placing the Pivot
int temp = arr[pivot];
arr[pivot] = arr[left_index];
arr[left_index] = temp;
// Sorting the first half
quickSort(arr, start, left_index - 1);
// Sorting the second half
quickSort(arr, left_index + 1, end);
return arr;
}
int main()
{
int n;
// Getting the number of Elements
cin >> n;
int arr[n];
for (int i = 0; i < n; i++)
cin >> arr[i];
int *sortedArr = quickSort(arr, 0, n - 1);
for (int i = 0; i < n; i++)
cout << sortedArr[i] << ' ';
cout << '\n';
return 0;
}
/*
Test Case :
Input : 7
7 6 5 4 3 2 1
Output : 1 2 3 4 5 6 7
Time Complexity: The time taken by QuickSort depends upon the input array and partition strategy. Following are three cases:
Best Case : Θ(n.Logn)
Average Case: Θ(n.Logn)
Worst Case : Θ(n^2)
Space Complexity: O(n)
*/