Skip to content

Latest commit

 

History

History
104 lines (71 loc) · 3.4 KB

09_k_means.md

File metadata and controls

104 lines (71 loc) · 3.4 KB

k-means

partitioning a dataset into k distinct clusters based on similarity measures. It aims to minimize the within-cluster sum of squares (WCSS) or the average squared distance between data points and their assigned cluster centroids

过程

PCA

  • explained variance ratio

问答

  • cons

    • 对outlier敏感
  • k means 如何选择k

    • scree plot: 横坐标n_cluster, 纵坐标intra-cluster variance (区分 inter-cluster variance)
  • 怎么判断clustering效果好不好

    • 聚类评价指标: Purity, NMI, RI, Precision(查准率), Recall(查全率), F, ARI, Accuracy(正确率)
  • k-means和KNN的区别

    • k-means无监督,KNN有监督
  • signal-to-variance ratio

  • K-means为什么是收敛的

  • K-means 怎么初始化 K-means++

  • EM方法为什么是收敛的

code

# https://gancode.com/2021/03/01/6933952373303803912.html
import numpy as np
import random


class KMeans:
    def __init__(self, n_clusters=3, random_state=0):
        assert n_clusters >=1, " must be valid"
        self._n_clusters = n_clusters
        self._random_state = random_state     
        self._center = None  # cluster中心, n_cluster * n_feature
        self.cluster_centers_ = None
        
    def distance(self, M, N):
        return (np.sum((M - N) ** 2, axis = 1))** 0.5
    
    def _generate_labels(self, center, X):
        return np.array([np.argmin(self.distance(center, item)) for item in X])

    def _generate_centers(self, labels, X):
        return np.array([np.average(X[labels == i], axis=0) for i in np.arange(self._n_clusters)])

    def fit_predict(self, X, n_iters=1000):
        # X: 样本, n_sample * n_feature
        k = self._n_clusters
        
        # 设置随机数
        if self._random_state:
            random.seed(self._random_state)
        
        # 生成随机中心点的索引
        center_index = [random.randint(0, X.shape[0]) for _ in np.arange(k)]        
        center = X[center_index]
        # print('init center: ', center)

        while n_iters > 0:            
            
            # 记录上一个迭代的中心点坐标
            last_center = center

            # 根据上一批中心点,计算各个点所属的类
            labels = self._generate_labels(last_center, X)
            self.labels_ = labels

            # 新的中心点坐标
            center = self._generate_centers(labels, X)        
            self.cluster_centers_ = center       

            # 如果新计算得到的中心点,和上一次计算得到的点相同,说明迭代已经稳定了。
            if (last_center == center).all():
                self.labels_ = self._generate_labels(center, X)
                break

            n_iters = n_iters - 1
        return self

时间复杂度: O(tkmn) ,t 为迭代次数,k 为簇的数目,n 为样本点数,m 为样本点维度
空间复杂度: O(m(n+k)) ,k 为簇的数目,m 为样本点维度,n 为样本点数

参考