forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
202 lines (167 loc) · 6.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Lint as: python3
# Copyright 2019 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=g-importing-member, g-multiple-import, g-import-not-at-top
# pylint: disable=protected-access, g-bad-import-order, missing-docstring
# pylint: disable=unused-variable, invalid-name, no-value-for-parameter
from copy import deepcopy
import os.path
import warnings
from absl import logging
import numpy as np
from sacred import Experiment, SETTINGS
# Ignore all tensorflow deprecation warnings
logging._warn_preinit_stderr = 0
warnings.filterwarnings("ignore", module=".*tensorflow.*")
import tensorflow.compat.v1 as tf
tf.logging.set_verbosity(tf.logging.ERROR)
import sonnet as snt
from sacred.stflow import LogFileWriter
from iodine.modules import utils
from iodine import configurations
SETTINGS.CONFIG.READ_ONLY_CONFIG = False
ex = Experiment("iodine")
@ex.config
def default_config():
continue_run = False # set to continue experiment from an existing checkpoint
checkpoint_dir = ("checkpoints/iodine"
) # if continue_run is False, "_{run_id}" will be appended
save_summaries_steps = 10
save_checkpoint_steps = 1000
n_z = 64 # number of latent dimensions
num_components = 7 # number of components (K)
num_iters = 5
learn_rate = 0.001
batch_size = 4
stop_after_steps = int(1e6)
# Details for the dataset, model and optimizer are left empty here.
# They can be found in the configurations for individual datasets,
# which are provided in configurations.py and added as named configs.
data = {} # Dataset details will go here
model = {} # Model details will go here
optimizer = {} # Optimizer details will go here
ex.named_config(configurations.clevr6)
ex.named_config(configurations.multi_dsprites)
ex.named_config(configurations.tetrominoes)
@ex.capture
def build(identifier, _config):
config_copy = deepcopy(_config[identifier])
return utils.build(config_copy, identifier=identifier)
def get_train_step(model, dataset, optimizer):
loss, scalars, _ = model(dataset("train"))
global_step = tf.train.get_or_create_global_step()
grads = optimizer.compute_gradients(loss)
gradients, variables = zip(*grads)
global_norm = tf.global_norm(gradients)
gradients, global_norm = tf.clip_by_global_norm(
gradients, 5.0, use_norm=global_norm)
grads = zip(gradients, variables)
train_op = optimizer.apply_gradients(grads, global_step=global_step)
with tf.control_dependencies([train_op]):
overview = model.get_overview_images(dataset("summary"))
scalars["debug/global_grad_norm"] = global_norm
summaries = {
k: tf.summary.scalar(k, v) for k, v in scalars.items()
}
summaries.update(
{k: tf.summary.image(k, v) for k, v in overview.items()})
return tf.identity(global_step), scalars, train_op
@ex.capture
def get_checkpoint_dir(continue_run, checkpoint_dir, _run, _log):
if continue_run:
assert os.path.exists(checkpoint_dir)
_log.info("Continuing run from checkpoint at {}".format(checkpoint_dir))
return checkpoint_dir
run_id = _run._id
if run_id is None: # then no observer was added that provided an _id
if not _run.unobserved:
_log.warning(
"No run_id given or provided by an Observer. (Re-)using run_id=1.")
run_id = 1
checkpoint_dir = checkpoint_dir + "_{run_id}".format(run_id=run_id)
_log.info(
"Starting a new run using checkpoint dir: '{}'".format(checkpoint_dir))
return checkpoint_dir
@ex.capture
def get_session(chkp_dir, loss, stop_after_steps, save_summaries_steps,
save_checkpoint_steps):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
hooks = [
tf.train.StopAtStepHook(last_step=stop_after_steps),
tf.train.NanTensorHook(loss),
]
return tf.train.MonitoredTrainingSession(
hooks=hooks,
config=config,
checkpoint_dir=chkp_dir,
save_summaries_steps=save_summaries_steps,
save_checkpoint_steps=save_checkpoint_steps,
)
@ex.command(unobserved=True)
def load_checkpoint(use_placeholder=False, session=None):
dataset = build("data")
model = build("model")
if use_placeholder:
inputs = dataset.get_placeholders()
else:
inputs = dataset()
info = model.eval(inputs)
if session is None:
session = tf.Session()
saver = tf.train.Saver()
checkpoint_dir = get_checkpoint_dir()
checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
saver.restore(session, checkpoint_file)
print('Successfully restored Checkpoint "{}"'.format(checkpoint_file))
# print variables
variables = tf.global_variables() + tf.local_variables()
for row in snt.format_variables(variables, join_lines=False):
print(row)
return {
"session": session,
"model": model,
"info": info,
"inputs": inputs,
"dataset": dataset,
}
@ex.automain
@LogFileWriter(ex)
def main(save_summaries_steps):
checkpoint_dir = get_checkpoint_dir()
dataset = build("data")
model = build("model")
optimizer = build("optimizer")
gstep, train_step_exports, train_op = get_train_step(model, dataset,
optimizer)
loss, ari = [], []
with get_session(checkpoint_dir, train_step_exports["loss/total"]) as sess:
while not sess.should_stop():
out = sess.run({
"step": gstep,
"loss": train_step_exports["loss/total"],
"ari": train_step_exports["loss/ari_nobg"],
"train": train_op,
})
loss.append(out["loss"])
ari.append(out["ari"])
step = out["step"]
if step % save_summaries_steps == 0:
mean_loss = np.mean(loss)
mean_ari = np.mean(ari)
ex.log_scalar("loss", mean_loss, step)
ex.log_scalar("ari", mean_ari, step)
print("{step:>6d} Loss: {loss: >12.2f}\t\tARI-nobg:{ari: >6.2f}".format(
step=step, loss=mean_loss, ari=mean_ari))
loss, ari = [], []