-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImageTest.py
24 lines (17 loc) · 870 Bytes
/
ImageTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from keras.models import load_model
from keras_preprocessing.image import ImageDataGenerator
from ImageClassification_Training import preprocess_image
if __name__ == '__main__':
test_dir = "data/fruits-360_dataset/fruits-360/Test"
checkpoint_file = 'data/models/pani_adam_200_cnn.hdf5'
test_datagen = ImageDataGenerator(rescale=1 / 255)
test_generator = test_datagen.flow_from_directory(test_dir, target_size=(100, 100))
label_map = test_generator.class_indices
model = load_model(checkpoint_file)
img_tensor = preprocess_image("data/upload/apples1.jpg")
classes = model.predict_classes(img_tensor, batch_size=1)
for label, num in label_map.items():
if num == classes:
print("I think this is a:", label)
score = model.evaluate_generator(test_generator, verbose=1)
print('Test Accuracy: ', score[1])