|
| 1 | +import aoc |
| 2 | +from typing import List, Dict, Tuple, FrozenSet |
| 3 | +from collections import namedtuple |
| 4 | +from operator import itemgetter |
| 5 | + |
| 6 | +def main(): |
| 7 | + aoc.header("Universal Orbit Map") |
| 8 | + aoc.run_tests() |
| 9 | + |
| 10 | + orbits = aoc.get_input().readlines() |
| 11 | + output = aoc.output(1, part1, args=[orbits], post=itemgetter(0)) |
| 12 | + aoc.output(2, part2_graph, args=[orbits, *output[1:]], comment="Dijstra's algorithm") |
| 13 | + aoc.output(2, part2_ancestor, args=[orbits, *output[1:]], comment="Common ancestor") |
| 14 | + |
| 15 | +def test(): |
| 16 | + # part 1 |
| 17 | + p1_input = [ |
| 18 | + "COM)B", |
| 19 | + "B)C", |
| 20 | + "C)D", |
| 21 | + "D)E", |
| 22 | + "E)F", |
| 23 | + "B)G", |
| 24 | + "G)H", |
| 25 | + "D)I", |
| 26 | + "E)J", |
| 27 | + "J)K", |
| 28 | + "K)L" |
| 29 | + ] |
| 30 | + (children, parents) = connect_nodes(p1_input) |
| 31 | + for child in children.keys(): |
| 32 | + if child != "COM": |
| 33 | + assert ischildof(child, "COM", children, parents), f"{child} not connected to COM!" |
| 34 | + |
| 35 | + values = annotate_nodes_depth(children) |
| 36 | + assert values["COM"] == 0 |
| 37 | + assert values["D"] == 3 |
| 38 | + assert values["L"] == 7 |
| 39 | + |
| 40 | + assert sum(values.values()) == 42 |
| 41 | + |
| 42 | + # part 2 (graph) |
| 43 | + p1_input.extend(["K)YOU","I)SAN"]) |
| 44 | + (children,parents) = connect_nodes(p1_input) |
| 45 | + graph = tree_to_graph(children, parents) |
| 46 | + start = parents["YOU"] |
| 47 | + end = next(filter(lambda t: "SAN" in t[1],children.items()))[0] |
| 48 | + transfers = dijkstra(graph, start=start, end=end) |
| 49 | + assert transfers == 4 |
| 50 | + |
| 51 | + assert part2_ancestor(p1_input, children, parents, annotate_nodes_depth(children)) == 4 |
| 52 | + |
| 53 | +def part1(orbits : List[str]): |
| 54 | + children, parents = connect_nodes(orbits) |
| 55 | + values = annotate_nodes_depth(children) |
| 56 | + return (sum(values.values()), children, parents, values) |
| 57 | + |
| 58 | +def part2_graph(orbits : List[str], children, parents, values): |
| 59 | + # children, parents = connect_nodes(orbits) # Could reuse this from p1, would save at most 1% time |
| 60 | + graph = tree_to_graph(children, parents) |
| 61 | + start = parents["YOU"] |
| 62 | + end = next(filter(lambda t: "SAN" in t[1],children.items()))[0] |
| 63 | + transfers = dijkstra(graph, start=start, end=end) |
| 64 | + return transfers |
| 65 | + |
| 66 | +def part2_ancestor(orbits : List[str], children, parents, values): |
| 67 | + # children, parents = connect_nodes(orbits) |
| 68 | + # values = annotate_nodes_depth(children) |
| 69 | + |
| 70 | + start = parents["YOU"] |
| 71 | + end = next(filter(lambda t: "SAN" in t[1],children.items()))[0] |
| 72 | + |
| 73 | + common_ancestors = set(ancestors(start, parents)).intersection(ancestors(end, parents)) |
| 74 | + closest_common = max( |
| 75 | + map( |
| 76 | + lambda n:(n, values[n]), |
| 77 | + common_ancestors |
| 78 | + ), |
| 79 | + key=itemgetter(1) |
| 80 | + ) |
| 81 | + return values[start] - closest_common[1] + values[end] - closest_common[1] |
| 82 | + |
| 83 | +def connect_nodes(orbits : List[str]) -> Tuple[Dict[str,List[str]], Dict[str,str]]: |
| 84 | + children = {} |
| 85 | + parents = {} |
| 86 | + |
| 87 | + for orbit in orbits: |
| 88 | + (parent, child) = orbit.strip().split(")") |
| 89 | + parents[child] = parent |
| 90 | + if parent in children: |
| 91 | + children[parent].append(child) |
| 92 | + else: |
| 93 | + children[parent] = [child] |
| 94 | + |
| 95 | + return (children, parents) |
| 96 | + |
| 97 | +def ischildof(child : str, parent : str, children : Dict[str,List[str]], parents : Dict[str,str]): |
| 98 | + if child in parents: |
| 99 | + if parents[child] == parent: return True # Immediate child |
| 100 | + else: return ischildof(parents[child], parent, children, parents) # Might be a grandchild |
| 101 | + else: |
| 102 | + # orphan - either not connected or COM |
| 103 | + return False |
| 104 | + |
| 105 | +def annotate_nodes_depth(children : Dict[str,List[str]], start_node="COM", values=None) -> Dict[str,int]: |
| 106 | + if values == None: |
| 107 | + values = {start_node: 0} |
| 108 | + for child in children.get(start_node, []): |
| 109 | + values[child] = values[start_node] + 1 |
| 110 | + values = annotate_nodes_depth(children, start_node=child, values=values) |
| 111 | + return values |
| 112 | + |
| 113 | +def tree_to_graph(children : Dict[str,List[str]], parents : Dict[str,str]) -> Dict[str,FrozenSet[str]]: |
| 114 | + graph = {} |
| 115 | + for node, parent in parents.items(): |
| 116 | + if node in children.keys(): |
| 117 | + graph[node] = frozenset([parent, *children[node]]) |
| 118 | + else: |
| 119 | + graph[node] = frozenset([parent]) |
| 120 | + |
| 121 | + return graph |
| 122 | + |
| 123 | +def dijkstra(graph : Dict[str,FrozenSet[str]], start : str, end : str): |
| 124 | + # basically a translation of https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#Algorithm |
| 125 | + # 1. |
| 126 | + unvisited = set(graph.keys()) |
| 127 | + # 2. |
| 128 | + distances = dict((n, len(graph)**10) if n != start else (start, 0) for n in graph.keys()) |
| 129 | + # A distance is tentative if the node is unvisited |
| 130 | + current = start |
| 131 | + |
| 132 | + while True: |
| 133 | + # 3. |
| 134 | + for neighbour in graph[current].intersection(unvisited): |
| 135 | + tentative = distances[current] + 1 |
| 136 | + if distances[neighbour] > tentative: |
| 137 | + distances[neighbour] = tentative |
| 138 | + # 4. |
| 139 | + unvisited.remove(current) |
| 140 | + # 5. |
| 141 | + if end not in unvisited: |
| 142 | + return distances[end] |
| 143 | + # 6. |
| 144 | + current = min(map(lambda n:(n,distances[n]), unvisited), key=itemgetter(1))[0] |
| 145 | + |
| 146 | +def ancestors(node : str, parents : Dict[str,str]): |
| 147 | + while node in parents.keys(): |
| 148 | + node = parents[node] |
| 149 | + yield node |
| 150 | + |
| 151 | +if __name__ == "__main__": |
| 152 | + main() |
0 commit comments