-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel.py
20 lines (17 loc) · 779 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import tensorflow as tf
def encode(x):
l1 = tf.nn.tanh(tf.add(tf.matmul(x,e_weights_h1),e_biases_h1))
l2 = tf.nn.tanh(tf.add(tf.matmul(l1,e_weights_h2),e_biases_h2))
l3 = tf.nn.tanh(tf.add(tf.matmul(l2,e_weights_h3),e_biases_h3))
return l3
def decode(x):
l1 = tf.nn.tanh(tf.add(tf.matmul(x,d_weights_h1),d_biases_h1))
l2 = tf.nn.tanh(tf.add(tf.matmul(l1,d_weights_h2),d_biases_h2))
l3 = tf.nn.tanh(tf.add(tf.matmul(l2,d_weights_h3),d_biases_h3))
return l3
def dnn(x):
l1 = tf.nn.relu(tf.add(tf.matmul(x,dnn_weights_h1),dnn_biases_h1))
dropout = tf.nn.dropout(l1, 0.5)
l2 = tf.nn.relu(tf.add(tf.matmul(l1,dnn_weights_h2),dnn_biases_h2))
out = tf.nn.softmax(tf.add(tf.matmul(l2,dnn_weights_out),dnn_biases_out))
return out