forked from LorranSutter/PredictStock-SVM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
StockSVM.py
178 lines (145 loc) · 6.03 KB
/
StockSVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import sys
import time
import numpy as np
import itertools as it
import multiprocessing
from sklearn import svm
from sklearn.model_selection import KFold, GridSearchCV
class StockSVM:
def __init__(self, values):
self.values = values
self.predict_next_k_days = dict()
self.clf = None
def __repr__(self):
return self.values.__repr__()
def __str__(self):
return self.values.__str__()
def addPredictNext_K_Days(self, k_days, predict_next_k_day):
'''
Add list of prediction according day key
'''
self.predict_next_k_days[k_days] = predict_next_k_day
def getValidFitParam(self, predictNext_k_day):
'''
Return parameters what is not NaN
'''
vals, preds = [], []
for val, pred in zip(self.values.values, self.predict_next_k_days[predictNext_k_day]):
if not np.isnan(pred):
vals.append(val)
preds.append(int(pred))
return vals, preds
def fit(self, predictNext_k_day, C=1.0, gamma='auto'):
'''
Ordinary SVC fitting
'''
if predictNext_k_day not in self.predict_next_k_days.keys():
print('{0} day(s) for predictNext not defined! Please, add a vector for that days first!'.format(
predictNext_k_day))
sys.exit()
vals, preds = self.getValidFitParam(predictNext_k_day)
svc = svm.SVC(C=C, gamma=gamma)
self.clf = svc.fit(vals, preds)
def fit_GridSearch(self, predictNext_k_day, parameters, n_jobs=3, k_fold_num=None, verbose=1):
'''
Grid Search Cross Validation Fitting
'''
if predictNext_k_day not in self.predict_next_k_days.keys():
print('{0} day(s) for predictNext not defined! Please, add a vector for that days first!'.format(
predictNext_k_day))
sys.exit()
vals, preds = self.getValidFitParam(predictNext_k_day)
svc = svm.SVC()
self.clf = GridSearchCV(
svc, parameters, n_jobs=n_jobs, cv=k_fold_num, verbose=verbose)
self.clf = self.clf.fit(vals, preds)
def fit_Cross_Validation(self, predictNext_k_day, parameters, k_fold_num=3, maxRunTime=25, verbose=1):
if predictNext_k_day not in self.predict_next_k_days.keys():
print('{0} day(s) for predictNext not defined! Please, add a vector for that days first!'.format(
predictNext_k_day))
sys.exit()
vals, preds = self.getValidFitParam(predictNext_k_day)
keys = parameters.keys()
def __fitSVC__(svc, X, y, queue):
clf = queue.get()
clf = svc.fit(X, y)
queue.put(clf)
def __runProcess__(svc, X_train, y_train, queue):
try:
p = multiprocessing.Process(target=__fitSVC__,
name="fitSVC",
args=(svc, X_train, y_train, queue))
t = 0
interrupted = False
p.start() # Start fitting process
while p.is_alive():
print("Time elapsed: {0:.2f}".format(t), end='\r')
# Reach maximum time, terminate process
if t >= maxRunTime:
p.terminate()
p.join()
interrupted = True
break
time.sleep(0.01)
t += 0.01
except Exception:
p.terminate()
p.join()
return interrupted
best_score = 0
best_svc = None
best_estimators = None
queue = multiprocessing.Queue()
for params in it.product(*parameters.values()):
if verbose != 0:
print("Params: ", params)
# Create model with current params
dict_params = dict(zip(keys, params))
svc = svm.SVC(**dict_params)
score_sum = 0
num_scores = 0
kf = KFold(n_splits=k_fold_num)
# Split vals, preds in k_fold_num folds
for train_ids, test_ids in kf.split(vals, preds):
# Get vals, preds train data according current fold
X_train = [vals[k] for k in train_ids]
y_train = [preds[k] for k in train_ids]
last_clf = None
queue.put(last_clf) # Share last_clf variable
# Init fitting parallel process
print(" Init process")
interrupted = __runProcess__(svc, X_train, y_train, queue)
# If process have finished, not interrupted by max run time
if not interrupted:
last_clf = queue.get() # Get shared last_clf variable
# Get vals, preds test data according current fold
X_test = [vals[k] for k in test_ids]
y_test = [preds[k] for k in test_ids]
# Add score for current fold
score = last_clf.score(X_test, y_test)
score_sum += score
num_scores += 1
print(" Last score: ", score)
print(" Score sum: ", score_sum)
print()
else:
print(" Process interrupted!")
print()
if num_scores != 0:
avarege_score = score_sum / num_scores
print(" Average score: ", avarege_score)
print()
if avarege_score > best_score:
best_score = avarege_score
best_svc = svc
best_estimators = params
print()
print("Best Score: ", best_score)
print("Best SVC: ", best_svc)
print("Best Estimators: ", best_estimators)
print()
if best_svc is not None:
self.clf = best_svc.fit(vals, preds)
# * Prediction function
def predict(self, X):
return self.clf.predict(X)