forked from ytZhang99/CF-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
69 lines (57 loc) · 2.66 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import cv2
import random
import torch.utils.data as data
from option import args
class MEFdataset(data.Dataset):
def __init__(self, transform):
super(MEFdataset, self).__init__()
self.dir_prefix = args.dir_train
self.lr_over = os.listdir(self.dir_prefix + 'lr_over/')
self.lr_over.sort()
self.lr_under = os.listdir(self.dir_prefix + 'lr_under/')
self.lr_under.sort()
self.hr_over = os.listdir(self.dir_prefix + 'hr_over/')
self.hr_over.sort()
self.hr_under = os.listdir(self.dir_prefix + 'hr_under/')
self.hr_under.sort()
self.hr = os.listdir(self.dir_prefix + 'hr/')
self.hr.sort()
self.scale = args.scale
self.patch_size = args.patch_size
self.transform = transform
def __len__(self):
return len(self.hr)
def __getitem__(self, idx):
lr_over = cv2.imread(self.dir_prefix + 'lr_over/' + self.lr_over[idx])
lr_under = cv2.imread(self.dir_prefix + 'lr_under/' + self.lr_under[idx])
hr_over = cv2.imread(self.dir_prefix + 'hr_over/' + self.hr_over[idx])
hr_under = cv2.imread(self.dir_prefix + 'hr_under/' + self.hr_under[idx])
hr = cv2.imread(self.dir_prefix + 'hr/' + self.hr[idx])
lr_over_p, lr_under_p, hr_over_p, hr_under_p, hr_p = self.get_patch(lr_over,
lr_under,
hr_over,
hr_under,
hr)
if self.transform:
lr_over_p = self.transform(lr_over_p)
lr_under_p = self.transform(lr_under_p)
hr_over_p = self.transform(hr_over_p)
hr_under_p = self.transform(hr_under_p)
hr_p = self.transform(hr_p)
return lr_over_p, lr_under_p, hr_over_p, hr_under_p, hr_p
def get_patch(self, l_over, l_under, h_over, h_under, h):
lh, lw = l_over.shape[:2]
l_stride = self.patch_size
scale = self.scale
h_stride = l_stride * scale
x = random.randint(0, lw - l_stride)
y = random.randint(0, lh - l_stride)
ox = scale * x
oy = scale * y
l_over = l_over[y:y + l_stride, x:x + l_stride, :]
l_under = l_under[y:y + l_stride, x:x + l_stride, :]
h_over = h_over[oy:oy + h_stride, ox:ox + h_stride, :]
h_under = h_under[oy:oy + h_stride, ox:ox + h_stride, :]
h = h[oy:oy + h_stride, ox:ox + h_stride, :]
return l_over, l_under, h_over, h_under, h