forked from TomTomTommi/HiNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
58 lines (47 loc) · 1.1 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Super parameters
clamp = 2.0
channels_in = 3
log10_lr = -4.5
lr = 10 ** log10_lr
epochs = 1000
weight_decay = 1e-5
init_scale = 0.01
lamda_reconstruction = 5
lamda_guide = 1
lamda_low_frequency = 1
device_ids = [0]
# Train:
batch_size = 16
cropsize = 224
betas = (0.5, 0.999)
weight_step = 1000
gamma = 0.5
# Val:
cropsize_val = 1024
batchsize_val = 2
shuffle_val = False
val_freq = 50
# Dataset
TRAIN_PATH = '/home/jjp/Dataset/DIV2K/DIV2K_train_HR/'
VAL_PATH = '/home/jjp/Dataset/DIV2K/DIV2K_valid_HR/'
format_train = 'png'
format_val = 'png'
# Display and logging:
loss_display_cutoff = 2.0
loss_names = ['L', 'lr']
silent = False
live_visualization = False
progress_bar = False
# Saving checkpoints:
MODEL_PATH = '/home/jjp/Hinet/model/'
checkpoint_on_error = True
SAVE_freq = 50
IMAGE_PATH = '/home/jjp/Hinet/image/'
IMAGE_PATH_cover = IMAGE_PATH + 'cover/'
IMAGE_PATH_secret = IMAGE_PATH + 'secret/'
IMAGE_PATH_steg = IMAGE_PATH + 'steg/'
IMAGE_PATH_secret_rev = IMAGE_PATH + 'secret-rev/'
# Load:
suffix = 'model.pt'
tain_next = False
trained_epoch = 0