-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaggregate_explanations_custom_masks.py
319 lines (291 loc) · 11.1 KB
/
aggregate_explanations_custom_masks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from pathlib import Path
from typing import List, Optional
import numpy as np
import pandas as pd
from jsonargparse import CLI
from monai.transforms import (
Compose,
EnsureChannelFirst,
LoadImage,
Orientation,
Spacing,
ToTensor,
)
from pqdm.processes import pqdm
from tqdm import tqdm
ATTRIBUTION_PROCESSING_FUNCTION = np.abs
ID2LABELS = {
0: "background",
1: "aorta",
2: "lung_upper_lobe_left",
3: "lung_lower_lobe_left",
4: "lung_upper_lobe_right",
5: "lung_middle_lobe_right",
6: "lung_lower_lobe_right",
7: "trachea",
8: "heart",
9: "pulmonary_vein",
10: "thyroid_gland",
11: "ribs",
12: "vertebraes",
13: "autochthon_left",
14: "autochthon_right",
15: "sternum",
16: "costal_cartilages",
}
ADDITIONALY_CALCULATE_JOINED = False
def pos_processing_function(explanation):
return np.clip(explanation, 0, None)
def neg_processing_function(explanation):
return pos_processing_function(-explanation)
def get_explanation_mass_inside_segmentation_mask(
explanation, segmentation_mask, class_id, attribution_processing_function
):
explanation = attribution_processing_function(explanation)
return np.sum(explanation * (segmentation_mask == class_id)) / np.sum(explanation)
def get_explanation_mean_inside_segmentation_mask(
explanation, segmentation_mask, class_id, attribution_processing_function
):
explanation = attribution_processing_function(explanation)
segmentation_mask = segmentation_mask == class_id
return np.sum(explanation * segmentation_mask) / np.sum(segmentation_mask)
def get_joined_explanation_mass_inside_segmentation_mask(
explanation, segmentation_mask, class_ids, attribution_processing_function
):
explanation = attribution_processing_function(explanation)
return np.sum(
explanation * np.isin(segmentation_mask, class_ids).astype(float)
) / np.sum(explanation)
def get_joined_explanation_mean_inside_segmentation_mask(
explanation, segmentation_mask, class_ids, attribution_processing_function
):
explanation = attribution_processing_function(explanation)
segmentation_mask = np.isin(segmentation_mask, class_ids).astype(float)
return np.sum(explanation * segmentation_mask).astype(float) / np.sum(
segmentation_mask
)
def get_iou_and_dice(pred, label, dice_metric, iou_metric, y_post, post_pred):
dice_metric.reset()
iou_metric.reset()
y = y_post(label).unsqueeze(0)
y_pred = post_pred(pred[0]).unsqueeze(0)
return dice_metric(y_pred, y), iou_metric(y_pred, y)
def process_explanation(
explanation_folder,
patient_id,
mask_path,
attribution_processing_function=ATTRIBUTION_PROCESSING_FUNCTION,
num_classes=17,
custom_masks_labels: Optional[List[str]] = None,
ids_of_interest: Optional[List[int]] = None,
is_mask_logits: bool = False,
):
load_transform = Compose(
[
LoadImage(reader="NibabelReader"),
EnsureChannelFirst(),
Orientation(axcodes="RAS"),
Spacing(
pixdim=(1.5, 1.5, 1.5), mode="bilinear" if is_mask_logits else "nearest"
),
ToTensor(),
]
)
pred = load_transform(mask_path)
if pred.shape[0] == 1:
segmentation_mask = pred.numpy()
else:
segmentation_mask = pred.argmax(axis=0, keepdim=True).numpy()
if ids_of_interest is not None:
mask_indices = np.isin(segmentation_mask, ids_of_interest)
segmentation_mask = np.where(mask_indices, segmentation_mask, 0)
for i, id_of_interest in enumerate(ids_of_interest, start=1):
segmentation_mask = np.where(
segmentation_mask == id_of_interest, i, segmentation_mask
)
num_mask_classes = len(np.unique(segmentation_mask))
explanation = np.load((explanation_folder / patient_id) / "grad.npy")
if custom_masks_labels is None:
if ids_of_interest is None:
custom_masks_labels = [
f"custom_mask_{i}" for i in range(1, num_mask_classes)
]
else:
custom_masks_labels = [f"custom_mask_{i}" for i in ids_of_interest]
explanation_metrics = {}
for class_id in range(num_classes):
cur_explanation = explanation[class_id]
if ADDITIONALY_CALCULATE_JOINED:
explanation_mass = get_joined_explanation_mass_inside_segmentation_mask(
cur_explanation,
segmentation_mask,
list(range(1, len(custom_masks_labels) + 1)),
attribution_processing_function,
)
explanation_mean = get_joined_explanation_mean_inside_segmentation_mask(
cur_explanation,
segmentation_mask,
list(range(1, len(custom_masks_labels) + 1)),
attribution_processing_function,
)
explanation_metrics[
f"{ID2LABELS[class_id]}_explanation_in_joined_custom_mask_mean"
] = explanation_mean
explanation_metrics[
f"{ID2LABELS[class_id]}_explanation_in_joined_custom_mask_mass"
] = explanation_mass
for i, class_name in enumerate(custom_masks_labels, start=1):
explanation_mass = get_explanation_mass_inside_segmentation_mask(
cur_explanation,
segmentation_mask,
i,
attribution_processing_function,
)
explanation_metrics[
f"{ID2LABELS[class_id]}_explanation_in_{class_name}_mass"
] = explanation_mass
explanation_mean = get_explanation_mean_inside_segmentation_mask(
cur_explanation,
segmentation_mask,
i,
attribution_processing_function,
)
explanation_metrics[
f"{ID2LABELS[class_id]}_explanation_in_{class_name}_mean"
] = explanation_mean
output_data = {
**{
"patient": patient_id,
},
**explanation_metrics,
}
return output_data
def main(
explanations_folder: Path = Path("data/ig_explanations_and_pred"),
custom_masks_folder: Path = Path("data/custom_mask_folder"),
custom_masks_labels: Optional[List[str]] = None,
save_path: Path = Path("data/explanations_aggregations_ig_custom_mask.csv"),
glob_str: str = "**/**/*.nii.gz",
num_workers: int = 4,
seperate_neg_and_pos: bool = False,
ids_of_interest: Optional[List[int]] = None,
are_masks_logits: bool = False,
calculate_joined: bool = False,
test_run: bool = False,
):
"""
Aggregate explanations for predictions and compute metrics.
Args:
explanations_folder: Path to folder with explanations.
custom_masks_folder: Path to folder with custom masks.
custom_masks_labels: List of custom masks labels names.
save_path: Path to save aggregated explanations.
glob_str: Glob string to find custom masks.
num_workers: Number of workers for multiprocessing.
seperate_neg_and_pos: Whether to compute metrics for negative and positive explanations separately.
ids_of_interest: List of ids of interest.
are_masks_logits: Whether masks are logits.
test_run: Whether to run in test mode (only one patient).
Returns:
None
"""
global ADDITIONALY_CALCULATE_JOINED
ADDITIONALY_CALCULATE_JOINED = calculate_joined
custom_masks_paths = sorted(custom_masks_folder.glob(glob_str))
patient_id_depth = len(glob_str.split("/"))
patient_ids = [
"/".join(str(custom_mask_path).split("/")[-patient_id_depth:]).replace(
".nii.gz", ""
)
for custom_mask_path in custom_masks_paths
]
if seperate_neg_and_pos:
kwargs_neg = [
{
"explanation_folder": explanations_folder,
"patient_id": patient_id,
"mask_path": mask_path,
"attribution_processing_function": neg_processing_function,
"custom_masks_labels": custom_masks_labels,
"ids_of_interest": ids_of_interest,
"is_mask_logits": are_masks_logits,
}
for mask_path, patient_id in zip(
custom_masks_paths,
patient_ids,
)
]
kwargs_pos = [
{
"explanation_folder": explanations_folder,
"patient_id": patient_id,
"mask_path": mask_path,
"attribution_processing_function": pos_processing_function,
"custom_masks_labels": custom_masks_labels,
"ids_of_interest": ids_of_interest,
"is_mask_logits": are_masks_logits,
}
for mask_path, patient_id in zip(
custom_masks_paths,
patient_ids,
)
]
if test_run:
output_data_neg = []
output_data_pos = []
for kwargs in tqdm(kwargs_neg, desc="Processing negative explanations"):
output_data_neg.append(process_explanation(**kwargs))
for kwargs in tqdm(kwargs_pos, desc="Processing positive explanations"):
output_data_pos.append(process_explanation(**kwargs))
else:
output_data_neg = pqdm(
kwargs_neg,
process_explanation,
n_jobs=num_workers,
argument_type="kwargs",
desc="Processing negative explanations",
)
output_data_pos = pqdm(
kwargs_pos,
process_explanation,
n_jobs=num_workers,
argument_type="kwargs",
desc="Processing positive explanations",
)
output_data_neg = pd.DataFrame(output_data_neg)
output_data_pos = pd.DataFrame(output_data_pos)
output_data = output_data_neg.merge(
output_data_pos, on="patient", suffixes=("_neg", "_pos")
)
else:
kwargs = [
{
"explanation_folder": explanations_folder,
"patient_id": patient_id,
"mask_path": mask_path,
"attribution_processing_function": ATTRIBUTION_PROCESSING_FUNCTION,
"custom_masks_labels": custom_masks_labels,
"ids_of_interest": ids_of_interest,
"is_mask_logits": are_masks_logits,
}
for mask_path, patient_id in zip(
custom_masks_paths,
patient_ids,
)
]
if test_run:
output_data = []
for kwargs in tqdm(kwargs, desc="Processing explanations"):
output_data.append(process_explanation(**kwargs))
else:
output_data = pqdm(
kwargs,
process_explanation,
n_jobs=num_workers,
argument_type="kwargs",
desc="Processing explanations",
)
output_data = pd.DataFrame(output_data)
output_data.to_csv(save_path, index=False)
if __name__ == "__main__":
CLI(main)