forked from aitorzip/PyTorch-SRGAN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
105 lines (87 loc) · 3.75 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# -*- coding: utf-8 -*-
"""Implements SRGAN models: https://arxiv.org/abs/1609.04802
TODO:
* Try to make this work with SELU
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import numpy as np
class FeatureExtractor(nn.Module):
def __init__(self, cnn, feature_layer=8):
super(FeatureExtractor, self).__init__()
self.features = nn.Sequential(*list(cnn.features.children())[:(feature_layer+1)])
def forward(self, x):
return self.features(x)
class denseNet(nn.Module):
def __init__(self, in_channels, k, layers, p=0.2):
super(denseNet, self).__init__()
self.layers = layers
for i in range(layers):
self.add_module('batchnorm' + str(i+1), nn.BatchNorm2d(in_channels))
self.add_module('conv' + str(i+1), nn.Conv2d(in_channels, k, 3, stride=1, padding=1))
self.add_module('drop' + str(i+1), nn.Dropout2d(p=p))
in_channels += k
def forward(self, x):
for i in range(self.layers):
y = self.__getattr__('batchnorm' + str(i+1))(x.clone())
y = F.elu(y)
y = self.__getattr__('conv' + str(i+1))(y)
y = self.__getattr__('drop' + str(i+1))(y)
x = torch.cat((x,y), dim=1)
return x
class Generator(nn.Module):
def __init__(self, upscale_factor):
super(Generator, self).__init__()
self.relu = nn.ReLU()
self.conv1 = nn.Conv2d(3, 64, (5, 5), (1, 1), (2, 2))
self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
self.conv4 = nn.Conv2d(32, 3*upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
self.pixel_shuffle = nn.PixelShuffle(upscale_factor)
self._initialize_weights()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.relu(self.conv3(x))
x = self.pixel_shuffle(self.conv4(x))
return x
def _initialize_weights(self):
init.orthogonal(self.conv1.weight, init.calculate_gain('relu'))
init.orthogonal(self.conv2.weight, init.calculate_gain('relu'))
init.orthogonal(self.conv3.weight, init.calculate_gain('relu'))
init.orthogonal(self.conv4.weight)
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, stride=1, padding=1)
self.conv2 = nn.Conv2d(64, 64, 3, stride=2, padding=1)
self.conv2_bn = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(64, 128, 3, stride=1, padding=1)
self.conv3_bn = nn.BatchNorm2d(128)
self.conv4 = nn.Conv2d(128, 128, 3, stride=2, padding=1)
self.conv4_bn = nn.BatchNorm2d(128)
self.conv5 = nn.Conv2d(128, 256, 3, stride=1, padding=1)
self.conv5_bn = nn.BatchNorm2d(256)
self.conv6 = nn.Conv2d(256, 256, 3, stride=2, padding=1)
self.conv6_bn = nn.BatchNorm2d(256)
self.conv7 = nn.Conv2d(256, 512, 3, stride=1, padding=1)
self.conv7_bn = nn.BatchNorm2d(512)
self.conv8 = nn.Conv2d(512, 512, 3, stride=2, padding=1)
self.conv8_bn = nn.BatchNorm2d(512)
self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, 1)
def forward(self, x):
x = F.elu(self.conv1(x))
x = F.elu(self.conv2_bn(self.conv2(x)))
x = F.elu(self.conv3_bn(self.conv3(x)))
x = F.elu(self.conv4_bn(self.conv4(x)))
x = F.elu(self.conv5_bn(self.conv5(x)))
x = F.elu(self.conv6_bn(self.conv6(x)))
x = F.elu(self.conv7_bn(self.conv7(x)))
x = F.elu(self.conv8_bn(self.conv8(x)))
# Flatten
x = x.view(x.size(0), -1)
x = F.elu(self.fc1(x))
return F.sigmoid(self.fc2(x))