forked from mikerr/raspi-face-talk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacedetect.py
executable file
·124 lines (99 loc) · 4.13 KB
/
facedetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/python
"""
This program is demonstration for face and object detection using haar-like features.
The program finds faces in a camera image or video stream and displays a red box around them.
Python implementation by: Roman Stanchak, James Bowman
"""
import os,subprocess,glob,time
import cv2.cv as cv
from optparse import OptionParser
# Parameters for haar detection
# From the API:
# The default parameters (scale_factor=2, min_neighbors=3, flags=0) are tuned
# for accurate yet slow object detection. For a faster operation on real video
# images the settings are:
# scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING,
# min_size=<minimum possible face size
min_size = (2, 2)
haar_scale = 1.2
min_neighbors = 2
haar_flags = 0
# detection image width
smallwidth = 70
def detect_and_draw(img, cascade, detected):
# allocate temporary images
gray = cv.CreateImage((img.width,img.height), 8, 1)
image_scale = img.width / smallwidth
small_img = cv.CreateImage((cv.Round(img.width / image_scale), cv.Round (img.height / image_scale)), 8, 1)
# convert color input image to grayscale
cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
# scale input image for faster processing
cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
cv.EqualizeHist(small_img, small_img)
if(cascade):
t = cv.GetTickCount()
faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0), haar_scale, min_neighbors, haar_flags, min_size)
# t = cv.GetTickCount() - t
# print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
if faces:
if detected == 0:
# os.system('festival --tts hi &')
detected = 1
for ((x, y, w, h), n) in faces:
# the input to cv.HaarDetectObjects was resized, so scale the
# bounding box of each face and convert it to two CvPoints
pt1 = (int(x * image_scale), int(y * image_scale))
pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
print "Face at: ", pt1[0], ",", pt2[0], "\t", pt1[1], ",", pt2[1]
# find amount needed to pan/tilt
span = (pt1[0] + pt2[0]) / 2
stlt = (pt1[1] + pt2[1]) / 2
mid = smallwidth /2
if span < mid:
print "left", mid -span
else:
print "right", span - mid
#os.system('echo "6="' + str(valTilt) + ' > /dev/pi-blaster')
#os.system('echo "7="' + str(valPan) + ' > /dev/pi-blaster')
else:
if detected == 1:
#print "Last seen at: ", pt1[0], ",", pt2[0], "\t", pt1[1], ",", pt2[1]
#os.system('festival --tts bye &')
status = "just disappeared"
detected = 0
cv.ShowImage("result", img)
return detected
if __name__ == '__main__':
parser = OptionParser(usage = "usage: %prog [options] [filename|camera_index]")
parser.add_option("-c", "--cascade", action="store", dest="cascade", type="str", help="Haar cascade file, default %default", default = "../data/haarcascades/haarcascade_frontalface_alt.xml")
(options, args) = parser.parse_args()
cascade = cv.Load(options.cascade)
cv.NamedWindow("result", 1)
command = "raspistill -tl 90 -n -rot 180 -o /run/shm/image%d.jpg -w 320 -h 240 "
p=subprocess.Popen(command,shell=True)
# wait until we have at least 2 image files
while True:
files = filter(os.path.isfile, glob.glob('/run/shm/' + "image*jpg"))
if files > 1:
break
print "waiting for images"
time.sleep(0.5)
if True:
detected = 0
frame = None
while True:
t = cv.GetTickCount()
if p.poll() is not None:
print "restarting raspistill"
p=subprocess.Popen(command,shell=True)
files = filter(os.path.isfile, glob.glob('/run/shm/' + "image*jpg"))
files.sort(key=lambda x: os.path.getmtime(x))
imagefile = (files[-2])
frame=cv.LoadImage(imagefile,cv.CV_LOAD_IMAGE_COLOR)
detected = detect_and_draw(frame, cascade, detected)
t = cv.GetTickCount() - t
print "capture = %gfps" % (1000 / (t/(cv.GetTickFrequency()*1000.)))
if cv.WaitKey(10) >= 0:
break
cv.DestroyWindow("result")