diff --git a/MRICoilSensitivities/src/espirit.jl b/MRICoilSensitivities/src/espirit.jl index 02b775f4..f5960bf8 100644 --- a/MRICoilSensitivities/src/espirit.jl +++ b/MRICoilSensitivities/src/espirit.jl @@ -28,8 +28,8 @@ Where SENSE meets GRAPPA"](https://doi.org/10.1002/mrm.24751)). The matlab code * `use_poweriterations = true` - flag to determine if power iterations are used; power iterations are only used if `nmaps == 1`. They provide speed benefits over the full eigen decomposition, but are an approximation. """ function espirit(acqData::AcquisitionData{T,D}, ksize::NTuple{D,Int} = ntuple(d->6,D), ncalib::Int = 24, - imsize::NTuple{D,Int} = encodingSize(acqData); - nmaps::Int = 1, kargs...) where {T,D} + imsize::NTuple{D,Int} = encodingSize(acqData); + nmaps::Int = 1, kargs...) where {T,D} if !isCartesian(trajectory(acqData, 1)) @error "espirit does not yet support non-cartesian sampling" @@ -165,22 +165,9 @@ function kernelEig(kernel::Array{T}, imsize::Tuple, nmaps=1; use_poweriterations end end # resize is necessary for compatibility with MKL - reshape(fft!(reshape(kern2_, nc^2, sizePadded...), 2:ndims(kern2_)-1), nc, nc, sizePadded...) - - kern2 = zeros(T, nc, nc, imsize...) - - # This code works but requires one additional allocation of kern2 - # idx_center = CartesianIndices(sizePadded) .- CartesianIndex(sizePadded .÷ 2) .+ CartesianIndex(imsize .÷ 2) - # @views ifftshift!(kern2[:,:,idx_center], kern2_, 3:ndims(kern2_)) - # kern2 = ifftshift(kern2, 3:ndims(kern2_)) - - idx_center = collect(CartesianIndices(sizePadded) .- CartesianIndex(sizePadded .÷ 2) .+ CartesianIndex(imsize .÷ 2)) - [idx_center[i] = CartesianIndex(mod1.(Tuple(idx_center[i]) .+ cld.(imsize, 2), imsize)) for i in eachindex(idx_center)] - @views ifftshift!(kern2[:,:,idx_center], kern2_, 3:ndims(kern2_)) - - reshape(ifft!(reshape(kern2, nc^2, imsize...), 2:ndims(kern2)-1), nc, nc, imsize...) - kern2 .*= prod(imsize) / prod(sizePadded) / prod(ksize) - + kern2_tmp = reshape(fft(reshape(kern2_, nc^2, sizePadded...), 2:ndims(kern2_)-1), nc, nc, sizePadded...) + ifftshift!(kern2_, kern2_tmp, 3:ndims(kern2_)) + kern2_ ./= prod(sizePadded) * prod(ksize) eigenVecs = Array{ T }(undef, imsize..., nc, nmaps) eigenVals = Array{real(T)}(undef, imsize..., 1, nmaps) @@ -190,18 +177,17 @@ function kernelEig(kernel::Array{T}, imsize::Tuple, nmaps=1; use_poweriterations BLAS.set_num_threads(1) b = [randn(T, nc) for _=1:Threads.nthreads()] bᵒˡᵈ = [similar(b[1]) for _=1:Threads.nthreads()] + kern2 = [Matrix{T}(undef, nc, nc) for _ = 1:Threads.nthreads()] @floop for n ∈ CartesianIndices(imsize) - if use_poweriterations && nmaps==1 - S, U = power_iterations!(view(kern2,:, :, n), b=b[Threads.threadid()], bᵒˡᵈ=bᵒˡᵈ[Threads.threadid()]) - # The following uses the method from IterativeSolvers.jl but is currently slower and allocating more - # this is probably because we pre-allocate bᵒˡᵈ - #S, U = RegularizedLeastSquares.IterativeSolvers.powm!(view(kern2, :, :, n), b[Threads.threadid()], maxiter=5) + kernel_dft!(kern2[Threads.threadid()], kern2_, n, imsize, sizePadded) + if use_poweriterations && nmaps == 1 + S, U = power_iterations!(kern2[Threads.threadid()], b=b[Threads.threadid()], bᵒˡᵈ=bᵒˡᵈ[Threads.threadid()]) U .*= transpose(exp.(-1im .* angle.(U[1]))) @views eigenVals[n, 1, :] .= real.(S) else - S, U = eigen!(view(kern2, :, :, n); sortby = (λ) -> -abs(λ)) + S, U = eigen!(kern2[Threads.threadid()]; sortby = (λ) -> -abs(λ)) U = @view U[:,1:nmaps] U .*= transpose(exp.(-1im .* angle.(@view U[1, :]))) @views eigenVals[n, 1, :] .= real.(S[1:nmaps]) @@ -217,10 +203,7 @@ function kernelEig(kernel::Array{T}, imsize::Tuple, nmaps=1; use_poweriterations end """ - power_iterations!(A; - b = randn(eltype(A), size(A,2)), - bᵒˡᵈ = similar(b), - rtol=1e-6, maxiter=1000, verbose=false) + power_iterations!(A; b = randn(eltype(A), size(A,2)), bᵒˡᵈ = similar(b), rtol=1e-6, maxiter=1000) Power iterations to determine the maximum eigenvalue of a normal operator or square matrix. @@ -232,28 +215,21 @@ Power iterations to determine the maximum eigenvalue of a normal operator or squ * `b = randn(eltype(A), size(A,2))` - pre-allocated random vector; will be modified * `bᵒˡᵈ = similar(b)` - pre-allocated vector; will be modified * `maxiter=1000` - maximum number of power iterations -* `verbose=false` - print maximum eigenvalue if `true` # Output maximum eigenvalue of the operator """ -function power_iterations!(A; - b = randn(eltype(A), size(A,2)), - bᵒˡᵈ = similar(b), - rtol=1e-6, maxiter=1000, verbose=false) - +function power_iterations!(A; b = randn(eltype(A), size(A,2)), bᵒˡᵈ = similar(b), rtol=1e-6, maxiter=1000) b ./= norm(b) λ = Inf - for i = 1:maxiter + for _ = 1:maxiter copy!(bᵒˡᵈ, b) mul!(b, A, bᵒˡᵈ) λᵒˡᵈ = λ λ = dot(bᵒˡᵈ, b) / dot(bᵒˡᵈ, bᵒˡᵈ) b ./= norm(b) - - #verbose && println("iter = $i; λ = $λ") abs(λ/λᵒˡᵈ - 1) < rtol && break end @@ -309,3 +285,12 @@ function findIndices(newEnc::NTuple{D,Int64}, oldEnc::NTuple{D,Int64}) where D return LinearIndices(oldCart)[:] end end + +function kernel_dft!(kern2, kern2_, img_idx, imsize, sizePadded) + kern2 .= 0 + @inbounds for ik = CartesianIndices(sizePadded) + p = exp(1im * 2π * sum((Tuple(img_idx) .- 1) .* (Tuple(ik) .- sizePadded .÷ 2 .- 1) ./ imsize)) + @views kern2 .+= kern2_[:,:,ik] .* p + end + return kern2 +end \ No newline at end of file