-
Notifications
You must be signed in to change notification settings - Fork 156
/
Copy pathpifm.c
659 lines (518 loc) · 20.8 KB
/
pifm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
// To run:
// g++ -O3 -o pifm pifm.c
// ./pifm left_right.wav 103.3 22050 stereo
// ./pifm sound.wav
// Created by Oliver Mattos and Oskar Weigl.
// Code quality = Totally hacked together.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <dirent.h>
#include <math.h>
#include <fcntl.h>
#include <assert.h>
#include <malloc.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <signal.h>
#include <unistd.h>
#define PAGE_SIZE (4*1024)
#define BLOCK_SIZE (4*1024)
#define PI 3.14159265
int mem_fd;
char *gpio_mem, *gpio_map;
char *spi0_mem, *spi0_map;
// I/O access
volatile unsigned *gpio;
volatile unsigned *allof7e;
// GPIO setup macros. Always use INP_GPIO(x) before using OUT_GPIO(x) or SET_GPIO_ALT(x,y)
#define INP_GPIO(g) *(gpio+((g)/10)) &= ~(7<<(((g)%10)*3))
#define OUT_GPIO(g) *(gpio+((g)/10)) |= (1<<(((g)%10)*3))
#define SET_GPIO_ALT(g,a) *(gpio+(((g)/10))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))
#define GPIO_SET *(gpio+7) // sets bits which are 1 ignores bits which are 0
#define GPIO_CLR *(gpio+10) // clears bits which are 1 ignores bits which are 0
#define GPIO_GET *(gpio+13) // sets bits which are 1 ignores bits which are 0
#define ACCESS(base) *(volatile int*)((int)allof7e+base-0x7e000000)
#define SETBIT(base, bit) ACCESS(base) |= 1<<bit
#define CLRBIT(base, bit) ACCESS(base) &= ~(1<<bit)
#define CM_GP0CTL (0x7e101070)
#define GPFSEL0 (0x7E200000)
#define CM_GP0DIV (0x7e101074)
#define CLKBASE (0x7E101000)
#define DMABASE (0x7E007000)
#define PWMBASE (0x7e20C000) /* PWM controller */
struct GPCTL {
char SRC : 4;
char ENAB : 1;
char KILL : 1;
char : 1;
char BUSY : 1;
char FLIP : 1;
char MASH : 2;
unsigned int : 13;
char PASSWD : 8;
};
void getRealMemPage(void** vAddr, void** pAddr) {
void* a = valloc(4096);
((int*)a)[0] = 1; // use page to force allocation.
mlock(a, 4096); // lock into ram.
*vAddr = a; // yay - we know the virtual address
unsigned long long frameinfo;
int fp = open("/proc/self/pagemap", 'r');
lseek(fp, ((int)a)/4096*8, SEEK_SET);
read(fp, &frameinfo, sizeof(frameinfo));
*pAddr = (void*)((int)(frameinfo*4096));
}
void freeRealMemPage(void* vAddr) {
munlock(vAddr, 4096); // unlock ram.
free(vAddr);
}
void setup_fm()
{
/* open /dev/mem */
if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) {
printf("can't open /dev/mem \n");
exit (-1);
}
allof7e = (unsigned *)mmap(
NULL,
0x01000000, //len
PROT_READ|PROT_WRITE,
MAP_SHARED,
mem_fd,
0x20000000 //base
);
if ((int)allof7e==-1) exit(-1);
SETBIT(GPFSEL0 , 14);
CLRBIT(GPFSEL0 , 13);
CLRBIT(GPFSEL0 , 12);
struct GPCTL setupword = {6/*SRC*/, 1, 0, 0, 0, 1,0x5a};
ACCESS(CM_GP0CTL) = *((int*)&setupword);
}
void modulate(int m)
{
ACCESS(CM_GP0DIV) = (0x5a << 24) + 0x4d72 + m;
}
struct CB {
volatile unsigned int TI;
volatile unsigned int SOURCE_AD;
volatile unsigned int DEST_AD;
volatile unsigned int TXFR_LEN;
volatile unsigned int STRIDE;
volatile unsigned int NEXTCONBK;
volatile unsigned int RES1;
volatile unsigned int RES2;
};
struct DMAregs {
volatile unsigned int CS;
volatile unsigned int CONBLK_AD;
volatile unsigned int TI;
volatile unsigned int SOURCE_AD;
volatile unsigned int DEST_AD;
volatile unsigned int TXFR_LEN;
volatile unsigned int STRIDE;
volatile unsigned int NEXTCONBK;
volatile unsigned int DEBUG;
};
struct PageInfo {
void* p; // physical address
void* v; // virtual address
};
struct PageInfo constPage;
struct PageInfo instrPage;
#define BUFFERINSTRUCTIONS 65536
struct PageInfo instrs[BUFFERINSTRUCTIONS];
class SampleSink{
public:
virtual void consume(float* data, int dataLen){}; // floating point samples
virtual void consume(void* data, int dataLen){}; // raw data, len in bytes.
};
class Outputter : public SampleSink {
public:
int bufPtr;
float clocksPerSample;
const int sleeptime;
float fracerror;
float timeErr;
Outputter(float rate):
sleeptime((float)1e6 * BUFFERINSTRUCTIONS/4/rate/2), // sleep time is half of the time to empty the buffer
fracerror(0),
timeErr(0) {
clocksPerSample = 22500.0 / rate * 1373.5; // for timing, determined by experiment
bufPtr=0;
};
void consume(float* data, int num) {
for (int i=0; i<num; i++) {
float value = data[i]*8; // modulation index (AKA volume!)
// dump raw baseband data to stdout for audacity analysis.
//write(1, &value, 4);
// debug code. Replaces data with a set of tones.
//static int debugCount;
//debugCount++;
//value = (debugCount & 0x1000)?0.5:0; // two different tests
//value += 0.2 * ((debugCount & 0x8)?1.0:-1.0); // tone
//if (debugCount & 0x2000) value = 0; // silence
// end debug code
value += fracerror; // error that couldn't be encoded from last time.
int intval = (int)(round(value)); // integer component
float frac = (value - (float)intval + 1)/2;
unsigned int fracval = round(frac*clocksPerSample); // the fractional component
// we also record time error so that if one sample is output
// for slightly too long, the next sample will be shorter.
timeErr = timeErr - int(timeErr) + clocksPerSample;
fracerror = (frac - (float)fracval*(1.0-2.3/clocksPerSample)/clocksPerSample)*2; // error to feed back for delta sigma
// Note, the 2.3 constant is because our PWM isn't perfect.
// There is a finite time for the DMA controller to load a new value from memory,
// Therefore the width of each pulse we try to insert has a constant added to it.
// That constant is about 2.3 bytes written to the serializer, or about 18 cycles. We use delta sigma
// to correct for this error and the pwm timing quantization error.
// To reduce noise, rather than just rounding to the nearest clock we can use, we PWM between
// the two nearest values.
// delay if necessary. We can also print debug stuff here while not breaking timing.
static int time;
time++;
while( (ACCESS(DMABASE + 0x04 /* CurBlock*/) & ~ 0x7F) == (int)(instrs[bufPtr].p)) {
usleep(sleeptime); // are we anywhere in the next 4 instructions?
}
// Create DMA command to set clock controller to output FM signal for PWM "LOW" time.
((struct CB*)(instrs[bufPtr].v))->SOURCE_AD = (int)constPage.p + 2048 + intval*4 - 4 ;
bufPtr++;
// Create DMA command to delay using serializer module for suitable time.
((struct CB*)(instrs[bufPtr].v))->TXFR_LEN = (int)timeErr-fracval;
bufPtr++;
// Create DMA command to set clock controller to output FM signal for PWM "HIGH" time.
((struct CB*)(instrs[bufPtr].v))->SOURCE_AD = (int)constPage.p + 2048 + intval*4 + 4;
bufPtr++;
// Create DMA command for more delay.
((struct CB*)(instrs[bufPtr].v))->TXFR_LEN = fracval;
bufPtr=(bufPtr+1) % (BUFFERINSTRUCTIONS);
}
}
};
class PreEmp : public SampleSink {
public:
float fmconstant;
float dataold;
SampleSink* next;
// this isn't the right filter... But it's close...
// Something todo with a bilinear transform not being right...
PreEmp(float rate, SampleSink* next):
fmconstant(rate * 75.0e-6), // for pre-emphisis filter. 75us time constant
dataold(0),
next(next) { };
void consume(float* data, int num) {
for (int i=0; i<num; i++) {
float value = data[i];
float sample = value + (dataold-value) / (1-fmconstant); // fir of 1 + s tau
next->consume(&sample, 1);
dataold = value;
}
}
};
class Resamp : public SampleSink {
public:
static const int QUALITY = 5; // comp. complexity goes up linearly with this.
static const int SQUALITY = 10; // start time quality (defines max phase error of filter vs ram used & cache thrashing)
static const int BUFSIZE = 1000;
float dataOld[QUALITY];
float sincLUT[SQUALITY][QUALITY]; // [startime][samplenum]
float ratio;
float outTimeLeft;
float outBuffer[BUFSIZE];
int outBufPtr;
SampleSink* next;
Resamp(float rateIn, float rateOut, SampleSink* next):
outTimeLeft(1.0),
outBufPtr(0),
ratio((float)rateIn/(float)rateOut),
next(next) {
for(int i=0; i<QUALITY; i++) { // sample
for(int j=0; j<SQUALITY; j++) { // starttime
float x = PI * ((float)j/SQUALITY + (QUALITY-1-i) - (QUALITY-1)/2.0);
if (x==0)
sincLUT[j][i] = 1.0; // sin(0)/(0) == 1, says my limits therory
else
sincLUT[j][i] = sin(x)/x;
}
}
};
void consume(float* data, int num) {
for (int i=0; i<num; i++) {
// shift old data along
for (int j=0; j<QUALITY-1; j++) {
dataOld[j] = dataOld[j+1];
}
// put in new sample
dataOld[QUALITY-1] = data[i];
outTimeLeft -= 1.0;
// go output this stuff!
while (outTimeLeft<1.0) {
float outSample = 0;
int lutNum = (int)(outTimeLeft*SQUALITY);
for (int j=0; j<QUALITY; j++) {
outSample += dataOld[j] * sincLUT[lutNum][j];
}
outBuffer[outBufPtr++] = outSample;
outTimeLeft += ratio;
// if we have lots of data, shunt it to the next stage.
if (outBufPtr >= BUFSIZE) {
next->consume(outBuffer, outBufPtr);
outBufPtr = 0;
}
}
}
}
};
class NullSink: public SampleSink {
public:
NullSink() { }
void consume(float* data, int num) {} // throws away data
};
// decodes a mono wav file
class Mono: public SampleSink {
public:
SampleSink* next;
Mono(SampleSink* next): next(next) { }
void consume(void* data, int num) { // expects num%2 == 0
for (int i=0; i<num/2; i++) {
float l = (float)(((short*)data)[i]) / 32768.0;
next->consume( &l, 1);
}
}
};
class StereoSplitter: public SampleSink {
public:
SampleSink* nextLeft;
SampleSink* nextRight;
StereoSplitter(SampleSink* nextLeft, SampleSink* nextRight):
nextLeft(nextLeft), nextRight(nextRight) { }
void consume(void* data, int num) { // expects num%4 == 0
for (int i=0; i<num/2; i+=2) {
float l = (float)(((short*)data)[i]) / 32768.0;
nextLeft->consume( &l, 1);
float r = (float)(((short*)data)[i+1]) / 32768.0;
nextRight->consume( &r, 1);
}
}
};
const unsigned char RDSDATA[] = {
// RDS data. Send MSB first. Google search gr_rds_data_encoder.cc to make your own data.
0x50, 0xFF, 0xA9, 0x01, 0x02, 0x1E, 0xB0, 0x00, 0x05, 0xA1, 0x41, 0xA4, 0x12,
0x50, 0xFF, 0xA9, 0x01, 0x02, 0x45, 0x20, 0x00, 0x05, 0xA1, 0x19, 0xB6, 0x8C,
0x50, 0xFF, 0xA9, 0x01, 0x02, 0xA9, 0x90, 0x00, 0x05, 0xA0, 0x80, 0x80, 0xDC,
0x50, 0xFF, 0xA9, 0x01, 0x03, 0xC7, 0xD0, 0x00, 0x05, 0xA0, 0x80, 0x80, 0xDC,
0x50, 0xFF, 0xA9, 0x09, 0x00, 0x14, 0x75, 0x47, 0x51, 0x7D, 0xB9, 0x95, 0x79,
0x50, 0xFF, 0xA9, 0x09, 0x00, 0x4F, 0xE7, 0x32, 0x02, 0x21, 0x99, 0xC8, 0x09,
0x50, 0xFF, 0xA9, 0x09, 0x00, 0xA3, 0x56, 0xF6, 0xD9, 0xE8, 0x81, 0xE5, 0xEE,
0x50, 0xFF, 0xA9, 0x09, 0x00, 0xF8, 0xC6, 0xF7, 0x5B, 0x19, 0xC8, 0x80, 0x88,
0x50, 0xFF, 0xA9, 0x09, 0x01, 0x21, 0xA5, 0x26, 0x19, 0xD5, 0xCD, 0xC3, 0xDC,
0x50, 0xFF, 0xA9, 0x09, 0x01, 0x7A, 0x36, 0x26, 0x56, 0x31, 0xC9, 0xC8, 0x72,
0x50, 0xFF, 0xA9, 0x09, 0x01, 0x96, 0x87, 0x92, 0x09, 0xA5, 0x41, 0xA4, 0x12,
0x50, 0xFF, 0xA9, 0x09, 0x01, 0xCD, 0x12, 0x02, 0x8C, 0x0D, 0xBD, 0xB6, 0xA6,
0x50, 0xFF, 0xA9, 0x09, 0x02, 0x24, 0x46, 0x17, 0x4B, 0xB9, 0xD1, 0xBC, 0xE2,
0x50, 0xFF, 0xA9, 0x09, 0x02, 0x7F, 0xD7, 0x34, 0x09, 0xE1, 0x9D, 0xB5, 0xFF,
0x50, 0xFF, 0xA9, 0x09, 0x02, 0x93, 0x66, 0x16, 0x92, 0xD9, 0xB0, 0xB9, 0x3E,
0x50, 0xFF, 0xA9, 0x09, 0x02, 0xC8, 0xF6, 0x36, 0xF4, 0x85, 0xB4, 0xA4, 0x74,
0x50, 0xFF, 0xA9, 0x09, 0x03, 0x11, 0x92, 0x02, 0x00, 0x00, 0x80, 0x80, 0xDC,
0x50, 0xFF, 0xA9, 0x09, 0x03, 0x4A, 0x02, 0x02, 0x00, 0x00, 0x80, 0x80, 0xDC,
0x50, 0xFF, 0xA9, 0x09, 0x03, 0xA6, 0xB2, 0x02, 0x00, 0x00, 0x80, 0x80, 0xDC,
0x50, 0xFF, 0xA9, 0x09, 0x03, 0xFD, 0x22, 0x02, 0x00, 0x00, 0x80, 0x80, 0xDC
};
class RDSEncoder: public SampleSink {
public:
float sinLut[8];
SampleSink* next;
int bitNum;
int lastBit;
int time;
float lastValue;
RDSEncoder(SampleSink* next):
next(next), bitNum(0), lastBit(0), time(0), lastValue(0) {
for (int i=0; i<8; i++) {
sinLut[i] = sin((float)i*2.0*PI*3/8);
}
}
void consume(float* data, int num) {
for (int i=0; i<num; i++) {
if (!time) {
// time for a new bit
int newBit = (RDSDATA[bitNum/8]>>(7-(bitNum%8)))&1;
lastBit = lastBit^newBit; // differential encoding
bitNum = (bitNum+1)%(20*13*8);
}
int outputBit = (time<192)?lastBit:1-lastBit; // manchester encoding
lastValue = lastValue*0.99 + (((float)outputBit)*2-1)*0.01; // very simple IIR filter to hopefully reduce sidebands.
data[i] += lastValue*sinLut[time%8]*0.05;
time = (time+1)%384;
}
next->consume(data, num);
}
};
// Takes 2 input signals at 152kHz and stereo modulates it.
class StereoModulator: public SampleSink {
public:
// Helper to make two input interfaces for the stereomodulator. Feels like I'm reimplementing a closure here... :-(
class ModulatorInput: public SampleSink {
public:
StereoModulator* mod;
int channel;
ModulatorInput(StereoModulator* mod, int channel):
mod(mod),
channel(channel) { }
void consume(float* data, int num) {
mod->consume(data, num, channel);
}
};
float buffer[1024];
int bufferOwner;
int bufferLen;
int state; // 8 state state machine.
float sinLut[16];
SampleSink* next;
StereoModulator(SampleSink* next):
next(next), bufferOwner(0), bufferLen(0), state(0) {
for (int i=0; i<16; i++) {
sinLut[i] = sin((float)i*2.0*PI/8);
}
}
SampleSink* getChannel(int channel) {
return new ModulatorInput(this, channel); // never freed, cos I'm a rebel...
}
void consume(float* data, int num, int channel) {
if (channel==bufferOwner || bufferLen==0) {
bufferOwner=channel;
// append to buffer
while(num && bufferLen<1024) {
buffer[bufferLen++] = data[0];
data++;
num--;
}
} else {
int consumable = (bufferLen<num)?bufferLen:num;
float* left = (bufferOwner==0)?buffer:data;
float* right = (bufferOwner==1)?buffer:data;
for (int i=0; i<consumable; i++) {
state = (state+1) %8;
// equation straight from wikipedia...
buffer[i] = ((left[i]+right[i])/2 + (left[i]-right[i])/2*sinLut[state*2])*0.83 + 0.17*sinLut[state];
}
next->consume(buffer, consumable);
// move stuff along buffer
for (int i=consumable; i<bufferLen; i++) {
buffer[i-consumable] = buffer[i];
}
bufferLen-=consumable;
//reconsume any remaining data
data += consumable;
num -= consumable;
consume(data, num, channel);
}
}
};
void playWav(char* filename, float samplerate, bool stereo)
{
int fp= STDIN_FILENO;
if(filename[0]!='-') fp = open(filename, 'r');
char data[1024];
SampleSink* ss;
if (stereo) {
StereoModulator* sm = new StereoModulator(new RDSEncoder(new Outputter(152000)));
ss = new StereoSplitter(
// left
new PreEmp(samplerate, new Resamp(samplerate, 152000, sm->getChannel(0))),
// Right
new PreEmp(samplerate, new Resamp(samplerate, 152000, sm->getChannel(1)))
);
} else {
ss = new Mono(new PreEmp(samplerate, new Outputter(samplerate)));
}
for (int i=0; i<22; i++)
read(fp, &data, 2); // read past header
int readBytes;
while (readBytes = read(fp, &data, 1024)) {
ss->consume(data, readBytes);
}
close(fp);
}
void unSetupDMA(){
printf("exiting\n");
struct DMAregs* DMA0 = (struct DMAregs*)&(ACCESS(DMABASE));
DMA0->CS =1<<31; // reset dma controller
}
void handSig(int dunno) {
exit(0);
}
void setupDMA( float centerFreq ){
atexit(unSetupDMA);
signal (SIGINT, handSig);
signal (SIGTERM, handSig);
signal (SIGHUP, handSig);
signal (SIGQUIT, handSig);
// allocate a few pages of ram
getRealMemPage(&constPage.v, &constPage.p);
int centerFreqDivider = (int)((500.0 / centerFreq) * (float)(1<<12) + 0.5);
// make data page contents - it's essientially 1024 different commands for the
// DMA controller to send to the clock module at the correct time.
for (int i=0; i<1024; i++)
((int*)(constPage.v))[i] = (0x5a << 24) + centerFreqDivider - 512 + i;
int instrCnt = 0;
while (instrCnt<BUFFERINSTRUCTIONS) {
getRealMemPage(&instrPage.v, &instrPage.p);
// make copy instructions
struct CB* instr0= (struct CB*)instrPage.v;
for (int i=0; i<4096/sizeof(struct CB); i++) {
instrs[instrCnt].v = (void*)((int)instrPage.v + sizeof(struct CB)*i);
instrs[instrCnt].p = (void*)((int)instrPage.p + sizeof(struct CB)*i);
instr0->SOURCE_AD = (unsigned int)constPage.p+2048;
instr0->DEST_AD = PWMBASE+0x18 /* FIF1 */;
instr0->TXFR_LEN = 4;
instr0->STRIDE = 0;
//instr0->NEXTCONBK = (int)instrPage.p + sizeof(struct CB)*(i+1);
instr0->TI = (1/* DREQ */<<6) | (5 /* PWM */<<16) | (1<<26/* no wide*/) ;
instr0->RES1 = 0;
instr0->RES2 = 0;
if (!(i%2)) {
instr0->DEST_AD = CM_GP0DIV;
instr0->STRIDE = 4;
instr0->TI = (1<<26/* no wide*/) ;
}
if (instrCnt!=0) ((struct CB*)(instrs[instrCnt-1].v))->NEXTCONBK = (int)instrs[instrCnt].p;
instr0++;
instrCnt++;
}
}
((struct CB*)(instrs[BUFFERINSTRUCTIONS-1].v))->NEXTCONBK = (int)instrs[0].p;
// set up a clock for the PWM
ACCESS(CLKBASE + 40*4 /*PWMCLK_CNTL*/) = 0x5A000026;
usleep(1000);
ACCESS(CLKBASE + 41*4 /*PWMCLK_DIV*/) = 0x5A002800;
ACCESS(CLKBASE + 40*4 /*PWMCLK_CNTL*/) = 0x5A000016;
usleep(1000);
// set up pwm
ACCESS(PWMBASE + 0x0 /* CTRL*/) = 0;
usleep(1000);
ACCESS(PWMBASE + 0x4 /* status*/) = -1; // clear errors
usleep(1000);
ACCESS(PWMBASE + 0x0 /* CTRL*/) = -1; //(1<<13 /* Use fifo */) | (1<<10 /* repeat */) | (1<<9 /* serializer */) | (1<<8 /* enable ch */) ;
usleep(1000);
ACCESS(PWMBASE + 0x8 /* DMAC*/) = (1<<31 /* DMA enable */) | 0x0707;
//activate dma
struct DMAregs* DMA0 = (struct DMAregs*)&(ACCESS(DMABASE));
DMA0->CS =1<<31; // reset
DMA0->CONBLK_AD=0;
DMA0->TI=0;
DMA0->CONBLK_AD = (unsigned int)(instrPage.p);
DMA0->CS =(1<<0)|(255 <<16); // enable bit = 0, clear end flag = 1, prio=19-16
}
int main(int argc, char **argv)
{
if (argc>1) {
setup_fm();
setupDMA(argc>2?atof(argv[2]):103.3);
playWav(argv[1], argc>3?atof(argv[3]):22050, argc>4);
} else
fprintf(stderr, "Usage: program wavfile.wav [freq] [sample rate] [stereo]\n\nWhere wavfile is 16 bit 22.5kHz Stereo. Set wavfile to '-' to use stdin.\nfreq is in Mhz (default 103.3)\nsample rate of wav file in Hz\n\nPlay an empty file to transmit silence\n");
return 0;
} // main