-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdetect.m
39 lines (33 loc) · 1.11 KB
/
detect.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
function detect(im,model,wSize)
%{
this function will take three parameters
1. im --> Test Image
2. model --> trained model
3. wStize --> Size of the window, i.e. [24,32]
and draw rectangle on best estimated window
%}
topLeftRow = 1;
topLeftCol = 1;
[bottomRightCol bottomRightRow d] = size(im);
fcount = 1;
% this for loop scan the entire image and extract features for each sliding window
for y = topLeftCol:bottomRightCol-wSize(2)
for x = topLeftRow:bottomRightRow-wSize(1)
p1 = [x,y];
p2 = [x+(wSize(1)-1), y+(wSize(2)-1)];
po = [p1; p2];
img = imcut(po,im);
featureVector{fcount} = HOG(double(img));
boxPoint{fcount} = [x,y];
fcount = fcount+1;
x = x+1;
end
end
lebel = ones(length(featureVector),1);
P = cell2mat(featureVector);
% each row of P' correspond to a window
[~, predictions] = svmclassify(P',lebel,model); % classifying each window
[a, indx]= max(predictions);
bBox = cell2mat(boxPoint(indx));
rectangle('Position',[bBox(1),bBox(2),24,32],'LineWidth',1, 'EdgeColor','r');
end