-
Notifications
You must be signed in to change notification settings - Fork 0
/
start.py
156 lines (134 loc) · 4.41 KB
/
start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import cv2 # 需要添加此导入
checkpoint = "./checkpoints/sam2.1_hiera_large.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
predictor = SAM2ImagePredictor(build_sam2(model_cfg, checkpoint, device="cpu"))
# 使用PIL加载图片并转换为numpy数组
# image = Image.open("/Users/xmly/Desktop/pic3.png")
# image = np.array(image)
image = Image.open("/Users/xmly/Documents/shadow/sam2/notebooks/images/truck.jpg")
image = np.array(image.convert("RGB"))
def show_mask(mask, ax, random_color=False, borders=True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask = mask.astype(np.uint8)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
if borders:
import cv2
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Try to smooth contours
contours = [
cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours
]
mask_image = cv2.drawContours(
mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2
)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(
pos_points[:, 0],
pos_points[:, 1],
color="green",
marker="*",
s=marker_size,
edgecolor="white",
linewidth=1.25,
)
ax.scatter(
neg_points[:, 0],
neg_points[:, 1],
color="red",
marker="*",
s=marker_size,
edgecolor="white",
linewidth=1.25,
)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(
plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=2)
)
def show_masks(
image,
masks,
scores,
point_coords=None,
box_coords=None,
input_labels=None,
borders=True,
):
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca(), borders=borders)
if point_coords is not None:
assert input_labels is not None
show_points(point_coords, input_labels, plt.gca())
if box_coords is not None:
# boxes
show_box(box_coords, plt.gca())
if len(scores) > 1:
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
plt.axis("off")
plt.show()
# 单个输入点
input_point = np.array([[500, 375], [1125, 625]])
input_label = np.array([1, 1])
# plt.figure(figsize=(10, 10))
# plt.imshow(image)
# show_points(input_point, input_label, plt.gca())
# plt.axis("on")
# plt.show()
with torch.inference_mode(), torch.autocast("cpu", dtype=torch.bfloat16):
predictor.set_image(image)
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
sorted_ind = np.argsort(scores)[::-1]
masks = masks[sorted_ind]
scores = scores[sorted_ind]
logits = logits[sorted_ind]
# # 增加一个输入点
# input_point = np.array([[500, 375], [1125, 625]])
# input_label = np.array([1, 1])
# mask_input = logits[np.argmax(scores), :, :] # Choose the model's best mask
# masks, scores, _ = predictor.predict(
# point_coords=input_point,
# point_labels=input_label,
# mask_input=mask_input[None, :, :],
# multimask_output=False,
# )
show_masks(
image,
masks,
scores,
point_coords=input_point,
input_labels=input_label,
borders=True,
)
# with torch.inference_mode(), torch.autocast("cpu", dtype=torch.bfloat16):
# predictor.set_image(image)
# masks, scores, _ = predictor.predict(
# point_coords=None,
# point_labels=None,
# multimask_output=True, # 返回多个mask
# )
# # 按照分数排序masks
# sorted_ind = np.argsort(scores)[::-1]
# masks = masks[sorted_ind]
# scores = scores[sorted_ind]
# # 显示结果
# show_masks(image, masks, scores)