-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
116 lines (87 loc) · 5.26 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Dave MacDonald 100909202
# Max Leijtens 101093543
# COMP 4107 Assignment 4
# December 6th, 2017
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
batch_size = 256
test_size = 256
def makeOneHot(Y, depth=10):
for y in Y:
y = tf.one_hot(y, 10)
return Y
def init_weights(name,shape): # Modified to take name (necessary for tf.get_variable)
return tf.get_variable(name, shape, initializer=tf.glorot_normal_initializer()) # Use Glorot normal initialization. tf.get_variable allows us to specify shape and initializer.
# return tf.Variable(tf.random_normal(shape, stddev=0.01))
# Added act argument for activation function, and changed the implementation to use the passed function.
def model(X, w, w1, w2, w_fc, w_o, p_keep_conv, p_keep_hidden, act): #
l1a = act(tf.nn.conv2d(X, w, # l1a shape=(?, 32, 32, 16)
strides=[1, 1, 1, 1], padding='SAME'))
l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1], # l1 shape=(?, 16, 16, 16)
strides=[1, 2, 2, 1], padding='SAME')
l1 = tf.nn.dropout(l1, p_keep_conv)
l2a = act(tf.nn.conv2d(l1, w1, # l2a shape=(?, 16, 16, 20)
strides=[1, 1, 1, 1], padding='SAME'))
l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1], # l2 shape=(?, 8, 8, 20)
strides=[1, 2, 2, 1], padding='SAME')
l2 = tf.nn.dropout(l2, p_keep_conv)
l3a = act(tf.nn.conv2d(l2, w2, # l2a shape=(?, 8, 8, 20)
strides=[1, 1, 1, 1], padding='SAME'))
l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1], # l2 shape=(?, 4, 4, 20)
strides=[1, 2, 2, 1], padding='SAME')
l3 = tf.nn.dropout(l3, p_keep_conv)
l4 = tf.reshape(l3, [-1, w_fc.get_shape().as_list()[0]]) # reshape to (?, 4x4x20) #Modified to take l2 instead of l1
l4 = tf.nn.dropout(l4, p_keep_conv)
l5 = act(tf.matmul(l4, w_fc))
l5 = tf.nn.dropout(l5, p_keep_hidden)
pyx = tf.matmul(l5, w_o)
return pyx
(trX, trY1), (teX, teY1) = tf.keras.datasets.cifar10.load_data()
trY = np.zeros((len(trY1), 10)) # Setup one-hot labels for training
for i, label in enumerate(trY1):
trY[i][int(label)] = 1
teY = np.zeros((len(teY1), 10)) # Setup one-hot labels for test
for i, label in enumerate(teY1):
teY[i][int(label)] = 1
trX = trX.reshape(-1, 32, 32, 3) # 32x32x3 input img
teX = teX.reshape(-1, 32, 32, 3) # 32x32x3 input img
X = tf.placeholder("float", [None, 32, 32, 3], name="X")
Y = tf.placeholder("float", [None,10], name="Y")
# Modified to add variable names to match new interface of init_weights()
w = init_weights('w',[5, 5, 3, 16]) # 5x5x3 conv, 16 outputs
w1 = init_weights('w1',[5, 5, 16, 20]) # 5x5x3 conv, 20 outputs
w2 = init_weights('w2',[5, 5, 20, 20])
w_fc = init_weights('w_fc', [20 * 4 * 4, 125]) # FC 20 * 4 * 4 inputs, 625 outputs # Modified dimension to match w2 output 64*7*7
w_o = init_weights('w_o',[125, 10]) # FC 625 inputs, 10 outputs (labels)
p_keep_conv = tf.placeholder("float", name="p_keep_conv")
p_keep_hidden = tf.placeholder("float", name="p_keep_hidden")
py_x = model(X, w, w1, w2, w_fc, w_o, p_keep_conv, p_keep_hidden, tf.nn.relu) # Modified to pass the relu activation function. #Modified to take w1
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
predict_op = tf.argmax(py_x, 1)
print("Done with preparations, starting session.")
# Launch the graph in a session
with tf.Session() as sess:
# you need to initialize all variables
tf.global_variables_initializer().run()
writer = tf.summary.FileWriter("cifar/graph",graph=sess.graph) # Added to log graph to file for visualization with TensorBoard.
saver = tf.train.Saver()
saver.restore(sess, "cifar/session.ckpt")
for i in range(10): # Changed to 5 epochs, from 100.
training_batch = zip(range(0, len(trX), batch_size),
range(batch_size, len(trX)+1, batch_size))
for start, end in training_batch:
# sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end],
# p_keep_conv: 0.8, p_keep_hidden: 0.5})
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end],
p_keep_conv: 0.8, p_keep_hidden: 0.5}) # Dropouts to 1 to "turn off" drop out
test_indices = np.arange(len(teX)) # Get A Test Batch
np.random.shuffle(test_indices)
test_indices = test_indices[0:test_size]
print(i, np.mean(np.argmax(teY[test_indices], axis=1) ==
sess.run(predict_op, feed_dict={X: teX[test_indices],
p_keep_conv: 1.0,
p_keep_hidden: 1.0})))
saver.save(sess, "cifar/session.ckpt")
writer.close() # Added to log graph to file for visualization with TensorBoard.