-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLotkaVolterraModel.py
executable file
·91 lines (84 loc) · 3.74 KB
/
LotkaVolterraModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# ====================================================================================
# Class to simulate simple 2-population Lotka-Volterra tumour model
# ====================================================================================
import sys
import numpy as np
from math import exp, log
sys.path.append("./")
from odeModelClass import ODEModel
class LotkaVolterraModel(ODEModel):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.name = "LotkaVolterraModel"
self.paramDic = {**self.paramDic,
'rS': 0.027,
'rR': 0.027,
'K': 1,
'dD': 1.5,
'dS': 0.,
'dR': 0.,
'S0': 0.74,
'R0':0.01,
'DMax':1}
self.stateVars = ['S', 'R']
# The governing equations
def ModelEqns(self, t, uVec):
S, R, D = uVec
dudtVec = np.zeros_like(uVec)
dudtVec[0] = self.paramDic['rS'] * (1 - (S+R)/self.paramDic['K']) * (1-self.paramDic['dD']*D) * S - self.paramDic['dS']*S
dudtVec[1] = self.paramDic['rR'] * (1 - (S+R)/self.paramDic['K']) * R - self.paramDic['dR']*R
dudtVec[2] = 0
return (dudtVec)
class ExponentialModel(ODEModel):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.name = "ExponentialModel"
self.paramDic = {**self.paramDic,
'rS': 0.01365,
'rR': 0.00825,
'Ks': 1,
'Kr': 0.25,
'dDs': 2.3205,
'dDr': 1.3205,
'S0': 0.74,
'R0':0.01,
'DMax':1,
'alpha':1,
'gamma':0.27385}
self.stateVars = ['S', 'R']
# The governing equations
def ModelEqns(self, t, uVec):
S, R, D = uVec
dudtVec = np.zeros_like(uVec)
try:
dudtVec[0] = self.paramDic['rS'] * S * (1 - ((S+(R / (1+exp(self.paramDic['gamma']*t))))/self.paramDic['Ks'])**self.paramDic['alpha'] - self.paramDic['dDs']*D)
dudtVec[1] = self.paramDic['rR'] * R * (1 - ((R+(S / (1+exp(self.paramDic['gamma']*t))))/self.paramDic['Kr'])**self.paramDic['alpha'] - self.paramDic['dDr']*D)
except OverflowError:
dudtVec[0] = self.paramDic['rS'] * S * (1 - ((S+(0))/self.paramDic['Ks'])**self.paramDic['alpha'] - self.paramDic['dDs']*D)
dudtVec[1] = self.paramDic['rR'] * R * (1 - ((R+(0))/self.paramDic['Kr'])**self.paramDic['alpha'] - self.paramDic['dDr']*D)
dudtVec[2] = 0
return (dudtVec)
class StemCellModel(ODEModel):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.name = "StemCellModel"
self.paramDic = {**self.paramDic,
'rR': log(2),
'beta': 1e-6,
'dR': 0.07,
'rho': 0.0001,
'phi': 0.01,
'S0': 1000,
'R0': 10,
'P0': 29,
'DMax': 1}
self.stateVars = ['S', 'R', 'P']
# The governing equations
def ModelEqns(self, t, uVec):
S, R, P, D = uVec
dudtVec = np.zeros_like(uVec)
dudtVec[0] = (1 - (R / (S + R)) * self.paramDic['beta']) * self.paramDic['rR'] * R - self.paramDic['dR'] * D * S # Differentiated cells
dudtVec[1] = (R / (S + R)) * self.paramDic['beta'] * self.paramDic['rR'] * R # Stem-like (drug resistant) cells
dudtVec[2] = self.paramDic['rho'] * S - self.paramDic['phi'] * P
dudtVec[3] = 0
return (dudtVec)