|
5 | 5 | <a id="H_053613DF"></a>
|
6 | 6 |
|
7 | 7 |
|
8 |
| -[](https://www.mathworks.com/matlabcentral/fileexchange/163696-biosciences-machine-learning) or [](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/biosciences-machine-learning&project=MachineLearningBiosciences.prj&file=README.mlx) |
| 8 | +[](https://www.mathworks.com/matlabcentral/fileexchange/163696-biosciences-machine-learning) or [](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Biosciences-Machine-Learning&project=MachineLearningBiosciences.prj&file=README.mlx) |
9 | 9 |
|
10 |
| -[](https://github.com/MathWorks-Teaching-Resources/Biosciences-Machine-Learning/blob/release/README.md) |
| 10 | +[](https://MathWorks-Teaching-Resources.github.io/Biosciences-Machine-Learning) |
11 | 11 |
|
12 | 12 | **Curriculum Module**
|
13 | 13 |
|
@@ -65,35 +65,35 @@ MATLAB® is used throughout. Tools from the the [Statistics and Machine Learning
|
65 | 65 | # Scripts
|
66 | 66 | <a id="TMP_3070"></a>
|
67 | 67 |
|
68 |
| -## [**An Overview of Machine Learning for Science and Engineering**](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/biosciences-machine-learning&project=MachineLearningBiosciences.prj&file=Scripts/IntrotoMachineLearning.mlx) |
| 68 | +## [**An Overview of Machine Learning for Science and Engineering**](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Biosciences-Machine-Learning&project=MachineLearningBiosciences.prj&file=Scripts/IntrotoMachineLearning.mlx) |
69 | 69 | ||||
|
70 | 70 | | :-- | :-- | :-- |
|
71 | 71 | | <img src="Images/image_3.png" width="171" alt="image_3.png"> <br> | **In this script, students will...** <br> $\bullet$ explain the primary goal of machine learning. <br> $\bullet$ distinguish between supervised and unsupervised learning. <br> $\bullet$ describe the key steps in a typical machine learning workflow. <br> | **Academic disciplines** <br> $\bullet$ Biosciences <br> $\bullet$ Biology <br> $\bullet$ AI | Machine Learning <br> $\bullet$ Engineering <br> |
|
72 | 72 |
|
73 | 73 | <a id="TMP_41f4"></a>
|
74 | 74 |
|
75 |
| -## [**Unsupervised Learning**](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/biosciences-machine-learning&project=MachineLearningBiosciences.prj&file=Scripts/UnsupervisedLearning.mlx) |
| 75 | +## [**Unsupervised Learning**](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Biosciences-Machine-Learning&project=MachineLearningBiosciences.prj&file=Scripts/UnsupervisedLearning.mlx) |
76 | 76 | ||||
|
77 | 77 | | :-- | :-- | :-- |
|
78 | 78 | | <img src="Images/image_4.png" width="141" alt="image_4.png"> <br> | **In this script, students will...** <br> $\bullet$ apply Principal Component Analysis (PCA) to reduce dimensions of biosciences data. <br> $\bullet$ use k\-means clustering to identify natural groupings in unlabeled data. <br> $\bullet$ evaluate clustering performance using confusion matrices. <br> | **Academic disciplines** <br> $\bullet$ Biosciences <br> $\bullet$ Biology <br> $\bullet$ AI | Machine Learning <br> |
|
79 | 79 |
|
80 | 80 | <a id="TMP_1fde"></a>
|
81 | 81 |
|
82 |
| -## [**Supervised Learning: Classification**](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/biosciences-machine-learning&project=MachineLearningBiosciences.prj&file=Scripts/SupervisedLearningClassification.mlx) |
| 82 | +## [**Supervised Learning: Classification**](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Biosciences-Machine-Learning&project=MachineLearningBiosciences.prj&file=Scripts/SupervisedLearningClassification.mlx) |
83 | 83 | ||||
|
84 | 84 | | :-- | :-- | :-- |
|
85 | 85 | | <img src="Images/image_5.png" width="171" alt="image_5.png"> <br> | **In this script, students will...** <br> $\bullet$ train and evaluate models to classify disease using supervised learning. <br> $\bullet$ assess model performance with accuracy, confusion matrices, and ROC curves. <br> $\bullet$ improve accuracy using feature selection, PCA, and cost weighting. <br> | **Academic disciplines** <br> $\bullet$ Biosciences <br> $\bullet$ Biology <br> $\bullet$ AI | Machine Learning <br> |
|
86 | 86 |
|
87 | 87 | <a id="TMP_245a"></a>
|
88 | 88 |
|
89 |
| -## [**Supervised Learning: Regression**](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/biosciences-machine-learning&project=MachineLearningBiosciences.prj&file=Scripts/SupervisedLearningRegression.mlx) |
| 89 | +## [**Supervised Learning: Regression**](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Biosciences-Machine-Learning&project=MachineLearningBiosciences.prj&file=Scripts/SupervisedLearningRegression.mlx) |
90 | 90 | ||||
|
91 | 91 | | :-- | :-- | :-- |
|
92 | 92 | | <img src="Images/image_6.png" width="171" alt="image_6.png"> <br> | **In this script, students will...** <br> $\bullet$ use supervised learning to train and evaluate regression models that predict mollusk age. <br> $\bullet$ evaluate and compare models using statistical performance metrics such as accuracy, confusion matrices, and RMSE. <br> $\bullet$ apply machine learning in biosciences. <br> | **Academic disciplines** <br> $\bullet$ Biosciences <br> $\bullet$ AI | Machine Learning <br> |
|
93 | 93 |
|
94 | 94 | <a id="TMP_18d1"></a>
|
95 | 95 |
|
96 |
| -## [**Unsupervised Learning Problem Set**](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/biosciences-machine-learning&project=MachineLearningBiosciences.prj&file=Scripts/UnsupervisedLearningPS.mlx) |
| 96 | +## [**Unsupervised Learning Problem Set**](https://matlab.mathworks.com/open/github/v1?repo=MathWorks-Teaching-Resources/Biosciences-Machine-Learning&project=MachineLearningBiosciences.prj&file=Scripts/UnsupervisedLearningPS.mlx) |
97 | 97 | ||||
|
98 | 98 | | :-- | :-- | :-- |
|
99 | 99 | | <img src="Images/image_7.png" width="171" alt="image_7.png"> <br> | **In this script, students will...** <br> $\bullet$ apply unsupervised learning to a cancer cell dataset. <br> | **Academic disciplines** <br> $\bullet$ Biosciences <br> $\bullet$ Biology <br> $\bullet$ AI | Machine Learning <br> |
|
|
0 commit comments