-
Notifications
You must be signed in to change notification settings - Fork 0
/
RX.cpp
902 lines (812 loc) · 34.8 KB
/
RX.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
#include "Arduino.h"
#include "config.h"
#include "def.h"
#include "types.h"
#include "Serial.h"
#include "Protocol.h"
#include "MultiWii.h"
#include "Alarms.h"
/**************************************************************************************/
/*************** Global RX related variables ********************/
/**************************************************************************************/
#if defined(SPEKTRUM)
#include <wiring.c> //Auto-included by the Arduino core... but we need it sooner.
#endif
//RAW RC values will be store here
#if defined(SBUS)
volatile uint16_t rcValue[RC_CHANS] = {1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500}; // interval [1000;2000]
#elif defined(SPEKTRUM) || defined(SERIAL_SUM_PPM)
volatile uint16_t rcValue[RC_CHANS] = {1502, 1502, 1502, 1502, 1502, 1502, 1502, 1502, 1502, 1502, 1502, 1502}; // interval [1000;2000]
#else
volatile uint16_t rcValue[RC_CHANS] = {1502, 1502, 1502, 1502, 1502, 1502, 1502, 1502}; // interval [1000;2000]
#endif
#if defined(SERIAL_SUM_PPM) //Channel order for PPM SUM RX Configs
static uint8_t rcChannel[RC_CHANS] = {SERIAL_SUM_PPM};
#elif defined(SBUS) //Channel order for SBUS RX Configs
// for 16 + 2 Channels SBUS. The 10 extra channels 8->17 are not used by MultiWii, but it should be easy to integrate them.
static uint8_t rcChannel[RC_CHANS] = {SBUS};
#elif defined(SUMD)
static uint8_t rcChannel[RC_CHANS] = {PITCH,YAW,THROTTLE,ROLL,AUX1,AUX2,AUX3,AUX4};
#elif defined(SPEKTRUM)
static uint8_t rcChannel[RC_CHANS] = {PITCH,YAW,THROTTLE,ROLL,AUX1,AUX2,AUX3,AUX4,8,9,10,11};
#else // Standard Channel order
static uint8_t rcChannel[RC_CHANS] = {ROLLPIN, PITCHPIN, YAWPIN, THROTTLEPIN, AUX1PIN,AUX2PIN,AUX3PIN,AUX4PIN};
static uint8_t PCInt_RX_Pins[PCINT_PIN_COUNT] = {PCINT_RX_BITS}; // if this slowes the PCINT readings we can switch to a define for each pcint bit
#endif
void rxInt(void);
/**************************************************************************************/
/*************** RX Pin Setup ********************/
/**************************************************************************************/
void configureReceiver() {
/****************** Configure each rc pin for PCINT ***************************/
#if defined(STANDARD_RX)
#if defined(MEGA)
DDRK = 0; // defined PORTK as a digital port ([A8-A15] are consired as digital PINs and not analogical)
#endif
// PCINT activation
for(uint8_t i = 0; i < PCINT_PIN_COUNT; i++){ // i think a for loop is ok for the init.
PCINT_RX_PORT |= PCInt_RX_Pins[i];
PCINT_RX_MASK |= PCInt_RX_Pins[i];
}
PCICR = PCIR_PORT_BIT;
/************* atmega328P's Specific Aux2 Pin Setup *********************/
#if defined(PROMINI)
#if defined(RCAUXPIN)
PCICR |= (1 << 0) ; // PCINT activated also for PINS [D8-D13] on port B
#if defined(RCAUXPIN8)
PCMSK0 = (1 << 0);
#endif
#if defined(RCAUXPIN12)
PCMSK0 = (1 << 4);
#endif
#endif
#endif
/*************** atmega32u4's Specific RX Pin Setup **********************/
#if defined(PROMICRO)
//Trottle on pin 7
DDRE &= ~(1 << 6); // pin 7 to input
PORTE |= (1 << 6); // enable pullups
EICRB |= (1 << ISC60);
EIMSK |= (1 << INT6); // enable interuppt
// Aux2 pin on PBO (D17/RXLED)
#if defined(RCAUX2PIND17)
DDRB &= ~(1 << 0); // set D17 to input
#endif
// Aux2 pin on PD2 (RX0)
#if defined(RCAUX2PINRXO)
DDRD &= ~(1 << 2); // RX to input
PORTD |= (1 << 2); // enable pullups
EICRA |= (1 << ISC20);
EIMSK |= (1 << INT2); // enable interuppt
#endif
#endif
/************************* Special RX Setup ********************************/
#endif
#if defined(SERIAL_SUM_PPM)
PPM_PIN_INTERRUPT;
#endif
#if defined (SPEKTRUM) || defined(SUMD)
SerialOpen(RX_SERIAL_PORT,115200);
#endif
#if defined(SBUS)
SerialOpen(RX_SERIAL_PORT,100000);
switch (RX_SERIAL_PORT) { //parity
#if defined(MEGA)
case 0: UCSR0C |= (1<<UPM01)|(1<<USBS0); break;
case 1: UCSR1C |= (1<<UPM11)|(1<<USBS1); break;
case 2: UCSR2C |= (1<<UPM21)|(1<<USBS2); break;
case 3: UCSR3C |= (1<<UPM31)|(1<<USBS3); break;
#endif
}
#endif
}
/**************************************************************************************/
/*************** Standard RX Pins reading ********************/
/**************************************************************************************/
#if defined(STANDARD_RX)
#if defined(FAILSAFE) && !defined(PROMICRO)
// predefined PC pin block (thanks to lianj) - Version with failsafe
#define RX_PIN_CHECK(pin_pos, rc_value_pos) \
if (mask & PCInt_RX_Pins[pin_pos]) { \
if (!(pin & PCInt_RX_Pins[pin_pos])) { \
dTime = cTime-edgeTime[pin_pos]; \
if (900<dTime && dTime<2200) { \
rcValue[rc_value_pos] = dTime; \
if((rc_value_pos==THROTTLEPIN || rc_value_pos==YAWPIN || \
rc_value_pos==PITCHPIN || rc_value_pos==ROLLPIN) \
&& dTime>FAILSAFE_DETECT_TRESHOLD) \
GoodPulses |= (1<<rc_value_pos); \
} \
} else edgeTime[pin_pos] = cTime; \
}
#else
// predefined PC pin block (thanks to lianj) - Version without failsafe
#define RX_PIN_CHECK(pin_pos, rc_value_pos) \
if (mask & PCInt_RX_Pins[pin_pos]) { \
if (!(pin & PCInt_RX_Pins[pin_pos])) { \
dTime = cTime-edgeTime[pin_pos]; \
if (900<dTime && dTime<2200) { \
rcValue[rc_value_pos] = dTime; \
} \
} else edgeTime[pin_pos] = cTime; \
}
#endif
// port change Interrupt
ISR(RX_PC_INTERRUPT) { //this ISR is common to every receiver channel, it is call everytime a change state occurs on a RX input pin
uint8_t mask;
uint8_t pin;
uint16_t cTime,dTime;
static uint16_t edgeTime[8];
static uint8_t PCintLast;
#if defined(FAILSAFE) && !defined(PROMICRO)
static uint8_t GoodPulses;
#endif
pin = RX_PCINT_PIN_PORT; // RX_PCINT_PIN_PORT indicates the state of each PIN for the arduino port dealing with Ports digital pins
mask = pin ^ PCintLast; // doing a ^ between the current interruption and the last one indicates wich pin changed
cTime = micros(); // micros() return a uint32_t, but it is not usefull to keep the whole bits => we keep only 16 bits
sei(); // re enable other interrupts at this point, the rest of this interrupt is not so time critical and can be interrupted safely
PCintLast = pin; // we memorize the current state of all PINs [D0-D7]
#if (PCINT_PIN_COUNT > 0)
RX_PIN_CHECK(0,2);
#endif
#if (PCINT_PIN_COUNT > 1)
RX_PIN_CHECK(1,4);
#endif
#if (PCINT_PIN_COUNT > 2)
RX_PIN_CHECK(2,5);
#endif
#if (PCINT_PIN_COUNT > 3)
RX_PIN_CHECK(3,6);
#endif
#if (PCINT_PIN_COUNT > 4)
RX_PIN_CHECK(4,7);
#endif
#if (PCINT_PIN_COUNT > 5)
RX_PIN_CHECK(5,0);
#endif
#if (PCINT_PIN_COUNT > 6)
RX_PIN_CHECK(6,1);
#endif
#if (PCINT_PIN_COUNT > 7)
RX_PIN_CHECK(7,3);
#endif
#if defined(FAILSAFE) && !defined(PROMICRO)
if (GoodPulses==(1<<THROTTLEPIN)+(1<<YAWPIN)+(1<<ROLLPIN)+(1<<PITCHPIN)) { // If all main four chanells have good pulses, clear FailSafe counter
GoodPulses = 0;
if(failsafeCnt > 20) failsafeCnt -= 20; else failsafeCnt = 0;
}
#endif
}
/********************* atmega328P's Aux2 Pins *************************/
#if defined(PROMINI)
#if defined(RCAUXPIN)
/* this ISR is a simplification of the previous one for PROMINI on port D
it's simplier because we know the interruption deals only with one PIN:
bit 0 of PORT B, ie Arduino PIN 8
or bit 4 of PORTB, ie Arduino PIN 12
=> no need to check which PIN has changed */
ISR(PCINT0_vect) {
uint8_t pin;
uint16_t cTime,dTime;
static uint16_t edgeTime;
pin = PINB;
cTime = micros();
sei();
#if defined(RCAUXPIN8)
if (!(pin & 1<<0)) { //indicates if the bit 0 of the arduino port [B0-B7] is not at a high state (so that we match here only descending PPM pulse)
#endif
#if defined(RCAUXPIN12)
if (!(pin & 1<<4)) { //indicates if the bit 4 of the arduino port [B0-B7] is not at a high state (so that we match here only descending PPM pulse)
#endif
dTime = cTime-edgeTime; if (900<dTime && dTime<2200) rcValue[0] = dTime; // just a verification: the value must be in the range [1000;2000] + some margin
} else edgeTime = cTime; // if the bit 2 is at a high state (ascending PPM pulse), we memorize the time
}
#endif
#endif
/**************** atmega32u4's Throttle & Aux2 Pin *******************/
#if defined(PROMICRO)
// throttle
ISR(INT6_vect){
static uint16_t now,diff;
static uint16_t last = 0;
now = micros();
if(!(PINE & (1<<6))){
diff = now - last;
if(900<diff && diff<2200){
rcValue[3] = diff;
#if defined(FAILSAFE)
if(diff>FAILSAFE_DETECT_TRESHOLD) { // if Throttle value is higher than FAILSAFE_DETECT_TRESHOLD
if(failsafeCnt > 20) failsafeCnt -= 20; else failsafeCnt = 0; // If pulse present on THROTTLE pin (independent from ardu version), clear FailSafe counter - added by MIS
}
#endif
}
}else last = now;
}
// Aux 2
#if defined(RCAUX2PINRXO)
ISR(INT2_vect){
static uint16_t now,diff;
static uint16_t last = 0;
now = micros();
if(!(PIND & (1<<2))){
diff = now - last;
if(900<diff && diff<2200) rcValue[7] = diff;
}else last = now;
}
#endif
#endif
#endif
/**************************************************************************************/
/*************** PPM SUM RX Pin reading ********************/
/**************************************************************************************/
// attachInterrupt fix for promicro
#if defined(PROMICRO) && defined(SERIAL_SUM_PPM)
ISR(INT6_vect){rxInt();}
#endif
// PPM_SUM at THROTTLE PIN on MEGA boards
#if defined(PPM_ON_THROTTLE) && defined(MEGA) && defined(SERIAL_SUM_PPM)
ISR(PCINT2_vect) { if(PINK & (1<<0)) rxInt(); }
#endif
// Read PPM SUM RX Data
#if defined(SERIAL_SUM_PPM)
void rxInt(void) {
uint16_t now,diff;
static uint16_t last = 0;
static uint8_t chan = 0;
#if defined(FAILSAFE)
static uint8_t GoodPulses;
#endif
now = micros();
sei();
diff = now - last;
last = now;
if(diff>3000) chan = 0;
else {
if(900<diff && diff<2200 && chan<RC_CHANS ) { //Only if the signal is between these values it is valid, otherwise the failsafe counter should move up
rcValue[chan] = diff;
#if defined(FAILSAFE)
if(chan<4 && diff>FAILSAFE_DETECT_TRESHOLD) GoodPulses |= (1<<chan); // if signal is valid - mark channel as OK
if(GoodPulses==0x0F) { // If first four chanells have good pulses, clear FailSafe counter
GoodPulses = 0;
if(failsafeCnt > 20) failsafeCnt -= 20; else failsafeCnt = 0;
}
#endif
}
chan++;
}
}
#endif
/**************************************************************************************/
/*************** SBUS RX Data ********************/
/**************************************************************************************/
#if defined(SBUS)
#define SBUS_SYNCBYTE 0x0F // Not 100% sure: at the beginning of coding it was 0xF0 !!!
static uint16_t sbusIndex=0;
static uint16_t sbus[25]={0};
void readSerial_RX(){
while(SerialAvailable(RX_SERIAL_PORT)){
int val = SerialRead(RX_SERIAL_PORT);
if(sbusIndex==0 && val != SBUS_SYNCBYTE)
continue;
sbus[sbusIndex++] = val;
if(sbusIndex==25){
sbusIndex=0;
spekFrameFlags = 0x00;
rcValue[0] = ((sbus[1]|sbus[2]<< 8) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[1] = ((sbus[2]>>3|sbus[3]<<5) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[2] = ((sbus[3]>>6|sbus[4]<<2|sbus[5]<<10) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[3] = ((sbus[5]>>1|sbus[6]<<7) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[4] = ((sbus[6]>>4|sbus[7]<<4) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[5] = ((sbus[7]>>7|sbus[8]<<1|sbus[9]<<9) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[6] = ((sbus[9]>>2|sbus[10]<<6) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[7] = ((sbus[10]>>5|sbus[11]<<3) & 0x07FF)/2+SBUS_MID_OFFSET; // & the other 8 + 2 channels if you need them
//The following lines: If you need more than 8 channels, max 16 analog + 2 digital. Must comment the not needed channels!
rcValue[8] = ((sbus[12]|sbus[13]<< 8) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[9] = ((sbus[13]>>3|sbus[14]<<5) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[10] = ((sbus[14]>>6|sbus[15]<<2|sbus[16]<<10) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[11] = ((sbus[16]>>1|sbus[17]<<7) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[12] = ((sbus[17]>>4|sbus[18]<<4) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[13] = ((sbus[18]>>7|sbus[19]<<1|sbus[20]<<9) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[14] = ((sbus[20]>>2|sbus[21]<<6) & 0x07FF)/2+SBUS_MID_OFFSET;
rcValue[15] = ((sbus[21]>>5|sbus[22]<<3) & 0x07FF)/2+SBUS_MID_OFFSET;
// now the two Digital-Channels
if ((sbus[23]) & 0x0001) rcValue[16] = 2000; else rcValue[16] = 1000;
if ((sbus[23] >> 1) & 0x0001) rcValue[17] = 2000; else rcValue[17] = 1000;
spekFrameDone = 0x01;
// Failsafe: there is one Bit in the SBUS-protocol (Byte 25, Bit 4) whitch is the failsafe-indicator-bit
#if defined(FAILSAFE)
if (!((sbus[23] >> 3) & 0x0001))
{if(failsafeCnt > 20) failsafeCnt -= 20; else failsafeCnt = 0;} // clear FailSafe counter
#endif
// For some reason the SBUS data provides only about 75% of the actual RX output pulse width
// Adjust the actual value by +/-25%. Sign determined by pulse width above or below center
uint8_t adj_index;
for(adj_index=0; adj_index<16; adj_index++) {
if (rcValue[adj_index] < MIDRC)
rcValue[adj_index] -= (MIDRC - rcValue[adj_index]) >> 2;
else
rcValue[adj_index] += (rcValue[adj_index] - MIDRC) >> 2;
}
}
}
}
#endif
/**************************************************************************************/
/*************** SUMD ********************/
/**************************************************************************************/
#if defined(SUMD)
#define SUMD_SYNCBYTE 0xA8
#define SUMD_MAXCHAN 8
#define SUMD_BUFFSIZE SUMD_MAXCHAN*2 + 5 // 6 channels + 5 -> 17 bytes for 6 channels
static uint8_t sumdIndex=0;
static uint8_t sumdSize=0;
static uint8_t sumd[SUMD_BUFFSIZE]={0};
void readSerial_RX(void) {
while (SerialAvailable(RX_SERIAL_PORT)) {
int val = SerialRead(RX_SERIAL_PORT);
if(sumdIndex == 0 && val != SUMD_SYNCBYTE) continue;
if(sumdIndex == 2) sumdSize = val;
if(sumdIndex < SUMD_BUFFSIZE) sumd[sumdIndex] = val;
sumdIndex++;
if(sumdIndex == sumdSize*2+5) {
sumdIndex = 0;
spekFrameFlags = 0x00;
debug[1] = sumd[1];
if (sumdSize > SUMD_MAXCHAN) sumdSize = SUMD_MAXCHAN;
for (uint8_t b = 0; b < sumdSize; b++)
rcValue[b] = ((sumd[2*b+3]<<8) | sumd[2*b+4])>>3;
spekFrameDone = 0x01; // havent checked crc at all
#if defined(FAILSAFE)
if (sumd[1] == 0x01)
{if(failsafeCnt > 20) failsafeCnt -= 20; else failsafeCnt = 0;} // clear FailSafe counter
#endif
}
}
}
#endif
/**************************************************************************************/
/*************** combine and sort the RX Datas ********************/
/**************************************************************************************/
#if defined(SPEKTRUM)
void readSerial_RX(void) {
if ((!f.ARMED) &&
#if defined(FAILSAFE) || (RX_SERIAL_PORT != 0)
(failsafeCnt > 5) &&
#endif
( SerialPeek(RX_SERIAL_PORT) == '$')) {
while (SerialAvailable(RX_SERIAL_PORT)) {
serialCom();
delay (10);
}
return;
} //End of: Is it the GUI?
while (SerialAvailable(RX_SERIAL_PORT) > SPEK_FRAME_SIZE) { // More than a frame? More bytes implies we weren't called for multiple frame times. We do not want to process 'old' frames in the buffer.
for (uint8_t i = 0; i < SPEK_FRAME_SIZE; i++) {SerialRead(RX_SERIAL_PORT);} //Toss one full frame of bytes.
}
if (spekFrameFlags == 0x01) { //The interrupt handler saw at least one valid frame start since we were last here.
if (SerialAvailable(RX_SERIAL_PORT) == SPEK_FRAME_SIZE) { //A complete frame? If not, we'll catch it next time we are called.
SerialRead(RX_SERIAL_PORT); SerialRead(RX_SERIAL_PORT); //Eat the header bytes
for (uint8_t b = 2; b < SPEK_FRAME_SIZE; b += 2) {
uint8_t bh = SerialRead(RX_SERIAL_PORT);
uint8_t bl = SerialRead(RX_SERIAL_PORT);
uint8_t spekChannel = 0x0F & (bh >> SPEK_CHAN_SHIFT);
if (spekChannel < RC_CHANS) rcValue[spekChannel] = 988 + ((((uint16_t)(bh & SPEK_CHAN_MASK) << 8) + bl) SPEK_DATA_SHIFT);
}
spekFrameFlags = 0x00;
spekFrameDone = 0x01;
#if defined(FAILSAFE)
if(failsafeCnt > 20) failsafeCnt -= 20; else failsafeCnt = 0; // Valid frame, clear FailSafe counter
#endif
} else { //Start flag is on, but not enough bytes means there is an incomplete frame in buffer. This could be OK, if we happened to be called in the middle of a frame. Or not, if it has been a while since the start flag was set.
uint32_t spekInterval = (timer0_overflow_count << 8) * (64 / clockCyclesPerMicrosecond()) - spekTimeLast;
if (spekInterval > 2500) {spekFrameFlags = 0;} //If it has been a while, make the interrupt handler start over.
}
}
}
#endif
uint16_t readRawRC(uint8_t chan) {
uint16_t data;
#if defined(SPEKTRUM) || defined(SBUS) || defined(SUMD)
if (chan < RC_CHANS) {
data = rcValue[rcChannel[chan]];
} else data = 1500;
#else
uint8_t oldSREG;
oldSREG = SREG; cli(); // Let's disable interrupts
data = rcValue[rcChannel[chan]]; // Let's copy the data Atomically
SREG = oldSREG; // Let's restore interrupt state
#endif
return data; // We return the value correctly copied when the IRQ's where disabled
}
/**************************************************************************************/
/*************** compute and Filter the RX data ********************/
/**************************************************************************************/
#define AVERAGING_ARRAY_LENGTH 4
void computeRC() {
static uint16_t rcData4Values[RC_CHANS][AVERAGING_ARRAY_LENGTH-1];
uint16_t rcDataMean,rcDataTmp;
static uint8_t rc4ValuesIndex = 0;
uint8_t chan,a;
uint8_t failsafeGoodCondition = 1;
#if !defined(OPENLRSv2MULTI)
rc4ValuesIndex++;
if (rc4ValuesIndex == AVERAGING_ARRAY_LENGTH-1) rc4ValuesIndex = 0;
for (chan = 0; chan < RC_CHANS; chan++) {
rcDataTmp = readRawRC(chan);
#if defined(FAILSAFE)
failsafeGoodCondition = rcDataTmp>FAILSAFE_DETECT_TRESHOLD || chan > 3 || !f.ARMED; // update controls channel only if pulse is above FAILSAFE_DETECT_TRESHOLD
#endif // In disarmed state allow always update for easer configuration.
#if defined(SPEKTRUM) || defined(SBUS) || defined(SUMD) // no averaging for Spektrum & SBUS & SUMD signal
if(failsafeGoodCondition) rcData[chan] = rcDataTmp;
#else
if(failsafeGoodCondition) {
rcDataMean = rcDataTmp;
for (a=0;a<AVERAGING_ARRAY_LENGTH-1;a++) rcDataMean += rcData4Values[chan][a];
rcDataMean = (rcDataMean+(AVERAGING_ARRAY_LENGTH/2))/AVERAGING_ARRAY_LENGTH;
if ( rcDataMean < (uint16_t)rcData[chan] -3) rcData[chan] = rcDataMean+2;
if ( rcDataMean > (uint16_t)rcData[chan] +3) rcData[chan] = rcDataMean-2;
rcData4Values[chan][rc4ValuesIndex] = rcDataTmp;
}
#endif
if (chan<8 && rcSerialCount > 0) { // rcData comes from MSP and overrides RX Data until rcSerialCount reaches 0
rcSerialCount --;
#if defined(FAILSAFE)
failsafeCnt = 0;
#endif
if (rcSerial[chan] >900) {rcData[chan] = rcSerial[chan];} // only relevant channels are overridden
}
}
#endif
}
/**************************************************************************************/
/*************** OPENLRS ********************/
/**************************************************************************************/
//note: this dont feels right in RX.pde
#if defined(OPENLRSv2MULTI)
// **********************************************************
// ****************** OpenLRS Rx Code *******************
// *** OpenLRS Designed by Melih Karakelle on 2010-2012 ***
// ** an Arudino based RC Rx/Tx system with extra futures **
// ** This Source code licensed under GPL **
// **********************************************************
// Version Number : 1.11
// Latest Code Update : 2012-03-25
// Supported Hardware : OpenLRS Rx boards (store.flytron.com)
// Project Forum : http://forum.flytron.com/viewforum.php?f=7
// Google Code Page : http://code.google.com/p/openlrs/
// **********************************************************
// # PROJECT DEVELOPERS #
// Melih Karakelle (http://www.flytron.com) (forum nick name: Flytron)
// Jan-Dirk Schuitemaker (http://www.schuitemaker.org/) (forum nick name: CrashingDutchman)
// Etienne Saint-Paul (http://www.gameseed.fr) (forum nick name: Etienne)
//
//######### TRANSMISSION VARIABLES ##########
#define CARRIER_FREQUENCY 435000 // 435Mhz startup frequency
#define FREQUENCY_HOPPING 1 // 1 = Enabled 0 = Disabled
//###### HOPPING CHANNELS #######
//Select the hopping channels between 0-255
// Default values are 13,54 and 23 for all transmitters and receivers, you should change it before your first flight for safety.
//Frequency = CARRIER_FREQUENCY + (StepSize(60khz)* Channel_Number)
static uint8_t hop_list[3] = {13,54,23};
//###### RF DEVICE ID HEADERS #######
// Change this 4 byte values for isolating your transmission, RF module accepts only data with same header
static uint8_t RF_Header[4] = {'O','L','R','S'};
//########## Variables #################
static uint32_t last_hopping_time;
static uint8_t RF_Rx_Buffer[17];
static uint16_t temp_int;
static uint16_t Servo_Buffer[10] = {3000,3000,3000,3000,3000,3000,3000,3000}; //servo position values from RF
static uint8_t hopping_channel = 1;
// **********************************************************
// ** RFM22B/Si4432 control functions for OpenLRS **
// ** This Source code licensed under GPL **
// **********************************************************
// Latest Code Update : 2011-09-26
// Supported Hardware : OpenLRS Tx/Rx boards (store.flytron.com)
// Project Forum : http://forum.flytron.com/viewforum.php?f=7
// Google Code Page : http://code.google.com/p/openlrs/
// **********************************************************
//*****************************************************************************
//*****************************************************************************
unsigned char ItStatus1, ItStatus2;
//--------------------------------------------------------------
void Write0( void ) {
SCK_off;
NOP();
SDI_off;
NOP();
SCK_on;
NOP();
}
//--------------------------------------------------------------
void Write1( void ) {
SCK_off;
NOP();
SDI_on;
NOP();
SCK_on;
NOP();
}
//--------------------------------------------------------------
void Write8bitcommand(uint8_t command) { // keep sel to low
uint8_t n=8;
nSEL_on;
SCK_off;
nSEL_off;
while(n--) {
if(command&0x80)
Write1();
else
Write0();
command = command << 1;
}
SCK_off;
}
//--------------------------------------------------------------
void send_read_address(uint8_t i) {
i &= 0x7f;
Write8bitcommand(i);
}
//--------------------------------------------------------------
void send_8bit_data(uint8_t i) {
uint8_t n = 8;
SCK_off;
while(n--) {
if(i&0x80)
Write1();
else
Write0();
i = i << 1;
}
SCK_off;
}
//--------------------------------------------------------------
uint8_t read_8bit_data(void) {
uint8_t Result, i;
SCK_off;
Result=0;
for(i=0;i<8;i++) { //read fifo data byte
Result=Result<<1;
SCK_on;
NOP();
if(SDO_1) {
Result|=1;
}
SCK_off;
NOP();
}
return(Result);
}
//--------------------------------------------------------------
uint8_t _spi_read(uint8_t address) {
uint8_t result;
send_read_address(address);
result = read_8bit_data();
nSEL_on;
return(result);
}
//--------------------------------------------------------------
void _spi_write(uint8_t address, uint8_t data) {
address |= 0x80;
Write8bitcommand(address);
send_8bit_data(data);
nSEL_on;
}
//-------Defaults 38.400 baud----------------------------------------------
void RF22B_init_parameter(void) {
ItStatus1 = _spi_read(0x03); // read status, clear interrupt
ItStatus2 = _spi_read(0x04);
_spi_write(0x06, 0x00); // no wakeup up, lbd,
_spi_write(0x07, RF22B_PWRSTATE_READY); // disable lbd, wakeup timer, use internal 32768,xton = 1; in ready mode
_spi_write(0x09, 0x7f); // c = 12.5p
_spi_write(0x0a, 0x05);
_spi_write(0x0b, 0x12); // gpio0 TX State
_spi_write(0x0c, 0x15); // gpio1 RX State
_spi_write(0x0d, 0xfd); // gpio 2 micro-controller clk output
_spi_write(0x0e, 0x00); // gpio 0, 1,2 NO OTHER FUNCTION.
_spi_write(0x70, 0x00); // disable manchest
// 57.6Kbps data rate
_spi_write(0x1c, 0x05); // case RATE_57.6K
_spi_write(0x20, 0x45);// 0x20 calculate from the datasheet= 500*(1+2*down3_bypass)/(2^ndec*RB*(1+enmanch))
_spi_write(0x21, 0x01); // 0x21 , rxosr[10--8] = 0; stalltr = (default), ccoff[19:16] = 0;
_spi_write(0x22, 0xD7); // 0x22 ncoff =5033 = 0x13a9
_spi_write(0x23, 0xDC); // 0x23
_spi_write(0x24, 0x03); // 0x24
_spi_write(0x25, 0xB8); // 0x25
_spi_write(0x2a, 0x1e);
_spi_write(0x6e, 0x0E); //case RATE_57.6K
_spi_write(0x6f, 0xBF); //case RATE_57.6K
_spi_write(0x30, 0x8c); // enable packet handler, msb first, enable crc,
_spi_write(0x32, 0xf3); // 0x32address enable for headere byte 0, 1,2,3, receive header check for byte 0, 1,2,3
_spi_write(0x33, 0x42); // header 3, 2, 1,0 used for head length, fixed packet length, synchronize word length 3, 2,
_spi_write(0x34, 0x07); // 7 default value or // 64 nibble = 32byte preamble
_spi_write(0x36, 0x2d); // synchronize word
_spi_write(0x37, 0xd4);
_spi_write(0x38, 0x00);
_spi_write(0x39, 0x00);
_spi_write(0x3a, RF_Header[0]); // tx header
_spi_write(0x3b, RF_Header[1]);
_spi_write(0x3c, RF_Header[2]);
_spi_write(0x3d, RF_Header[3]);
_spi_write(0x3e, 17); // total tx 17 byte
//RX HEADER
_spi_write(0x3f, RF_Header[0]); // check hearder
_spi_write(0x40, RF_Header[1]);
_spi_write(0x41, RF_Header[2]);
_spi_write(0x42, RF_Header[3]);
_spi_write(0x43, 0xff); // all the bit to be checked
_spi_write(0x44, 0xff); // all the bit to be checked
_spi_write(0x45, 0xff); // all the bit to be checked
_spi_write(0x46, 0xff); // all the bit to be checked
_spi_write(0x6d, 0x07); // 7 set power max power
_spi_write(0x79, 0x00); // no hopping
_spi_write(0x7a, 0x06); // 60khz step size (10khz x value) // no hopping
_spi_write(0x71, 0x23); // Gfsk, fd[8] =0, no invert for Tx/Rx data, fifo mode, txclk -->gpio
//_spi_write(0x72, 0x1F); // frequency deviation setting to 19.6khz (for 38.4kbps)
_spi_write(0x72, 0x2E); // frequency deviation setting to 28.8khz(for 57.6kbps)
_spi_write(0x73, 0x00);
_spi_write(0x74, 0x00); // no offset
//band 435.000
_spi_write(0x75, 0x53);
_spi_write(0x76, 0x7D);
_spi_write(0x77, 0x00);
}
void checkPots() {
////Flytron OpenLRS Multi Pots
pot_P = analogRead(7);
pot_I = analogRead(6);
pot_P = pot_P - 512;
pot_I = pot_I - 512;
pot_P = pot_P / 25; //+-20
pot_I = pot_I / 25; //+-20
}
void initOpenLRS(void) {
pinMode(GREEN_LED_pin, OUTPUT);
pinMode(RED_LED_pin, OUTPUT);
//RF module pins
pinMode(SDO_pin, INPUT); //SDO
pinMode(SDI_pin, OUTPUT); //SDI
pinMode(SCLK_pin, OUTPUT); //SCLK
pinMode(IRQ_pin, INPUT); //IRQ
pinMode(nSel_pin, OUTPUT); //nSEL
checkPots(); // OpenLRS Multi board hardware pot check;
}
//-----------------------------------------------------------------------
void rx_reset(void) {
_spi_write(0x07, RF22B_PWRSTATE_READY);
_spi_write(0x7e, 36); // threshold for rx almost full, interrupt when 1 byte received
_spi_write(0x08, 0x03); //clear fifo disable multi packet
_spi_write(0x08, 0x00); // clear fifo, disable multi packet
_spi_write(0x07,RF22B_PWRSTATE_RX ); // to rx mode
_spi_write(0x05, RF22B_Rx_packet_received_interrupt);
ItStatus1 = _spi_read(0x03); //read the Interrupt Status1 register
ItStatus2 = _spi_read(0x04);
}
//-----------------------------------------------------------------------
//--------------------------------------------------------------
void to_ready_mode(void) {
ItStatus1 = _spi_read(0x03);
ItStatus2 = _spi_read(0x04);
_spi_write(0x07, RF22B_PWRSTATE_READY);
}
void to_rx_mode(void) {
to_ready_mode();
delay(50);
rx_reset();
NOP();
}
//--------------------------------------------------------------
void to_sleep_mode(void) {
// TXEN = RXEN = 0;
//LED_RED = 0;
_spi_write(0x07, RF22B_PWRSTATE_READY);
ItStatus1 = _spi_read(0x03); //read the Interrupt Status1 register
ItStatus2 = _spi_read(0x04);
_spi_write(0x07, RF22B_PWRSTATE_POWERDOWN);
}
//--------------------------------------------------------------
void frequency_configurator(uint32_t frequency) {
// frequency formulation from Si4432 chip's datasheet
// original formulation is working with mHz values and floating numbers, I replaced them with kHz values.
frequency = frequency / 10;
frequency = frequency - 24000;
frequency = frequency - 19000; // 19 for 430-439.9 MHz band from datasheet
frequency = frequency * 64; // this is the Nominal Carrier Frequency (fc) value for register setting
uint8_t byte0 = (uint8_t) frequency;
uint8_t byte1 = (uint8_t) (frequency >> 8);
_spi_write(0x76, byte1);
_spi_write(0x77, byte0);
}
//############# FREQUENCY HOPPING FUNCTIONS #################
#if (FREQUENCY_HOPPING==1)
void Hopping(void) {
hopping_channel++;
if (hopping_channel>2) hopping_channel = 0;
_spi_write(0x79, hop_list[hopping_channel]);
}
#endif
void Config_OpenLRS() {
RF22B_init_parameter(); // Configure the RFM22B's registers
frequency_configurator(CARRIER_FREQUENCY); // Calibrate the RFM22B to this frequency, frequency hopping starts from here.
to_rx_mode();
#if (FREQUENCY_HOPPING==1)
Hopping(); //Hop to the next frequency
#endif
}
//############ MAIN LOOP ##############
void Read_OpenLRS_RC() {
uint8_t i,tx_data_length;
uint8_t first_data = 0;
if (_spi_read(0x0C)==0) {RF22B_init_parameter(); to_rx_mode(); }// detect the locked module and reboot
if ((currentTime-last_hopping_time > 25000)) {//automatic hopping for clear channel when rf link down for 25ms.
Red_LED_ON;
last_hopping_time = currentTime;
#if (FREQUENCY_HOPPING==1)
Hopping(); //Hop to the next frequency
#endif
}
if(nIRQ_0) { // RFM22B INT pin Enabled by received Data
Red_LED_ON;
send_read_address(0x7f); // Send the package read command
for(i = 0; i<17; i++) {//read all buffer
RF_Rx_Buffer[i] = read_8bit_data();
}
rx_reset();
if (RF_Rx_Buffer[0] == 'S') {// servo control data
for(i = 0; i<8; i++) {//Write into the Servo Buffer
temp_int = (256*RF_Rx_Buffer[1+(2*i)]) + RF_Rx_Buffer[2+(2*i)];
if ((temp_int>1500) && (temp_int<4500)) Servo_Buffer[i] = temp_int/2;
}
rcData[ROLL] = Servo_Buffer[0];
rcData[PITCH] = Servo_Buffer[1];
rcData[THROTTLE] = Servo_Buffer[2];
rcData[YAW] = Servo_Buffer[3];
rcData[AUX1] = Servo_Buffer[4];
rcData[AUX2] = Servo_Buffer[5];
rcData[AUX3] = Servo_Buffer[6];
rcData[AUX4] = Servo_Buffer[7];
}
#if (FREQUENCY_HOPPING==1)
Hopping(); //Hop to the next frequency
#endif
delay(1);
last_hopping_time = currentTime;
Red_LED_OFF;
}
Red_LED_OFF;
}
#endif
#if defined(SPEK_BIND) // Bind Support
void spekBind() {
pinMode(SPEK_BIND_DATA, INPUT); // Data line from sat
digitalWrite(SPEK_BIND_DATA,LOW); // Turn off internal Pull Up resistor
pinMode(SPEK_BIND_GROUND, INPUT);
digitalWrite(SPEK_BIND_GROUND,LOW);
pinMode(SPEK_BIND_GROUND, OUTPUT);
digitalWrite(SPEK_BIND_GROUND,LOW);
pinMode(SPEK_BIND_POWER, INPUT);
digitalWrite(SPEK_BIND_POWER,LOW);
pinMode(SPEK_BIND_POWER,OUTPUT);
while(1) { //Do not return. User presses reset button to return to normal.
blinkLED(4,255,1);
digitalWrite(SPEK_BIND_POWER,LOW); // Power off sat
pinMode(SPEK_BIND_DATA, OUTPUT);
digitalWrite(SPEK_BIND_DATA,LOW);
delay(1000);
blinkLED(4,255,1);
digitalWrite(SPEK_BIND_POWER,HIGH); // Power on sat
delay(10);
digitalWrite(SPEK_BIND_DATA,HIGH);
delay(60); // Keep data pin steady for 20 to 120ms after power up
noInterrupts();
for (byte i = 0; i < SPEK_BIND_PULSES; i++) {
digitalWrite(SPEK_BIND_DATA,LOW);
delayMicroseconds(118);
digitalWrite(SPEK_BIND_DATA,HIGH);
delayMicroseconds(122);
}
interrupts();
delay(60000); //Allow one full minute to bind, then try again.
}
}
#endif