forked from nomic-ai/gpt4all
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
204 lines (162 loc) · 8.41 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import torch.nn as nn
from argparse import ArgumentParser
from read import read_config
from accelerate.utils import set_seed
from data import load_data_for_inference
from tqdm import tqdm
from datasets import Dataset
import torch.distributed as dist
from transformers.trainer_pt_utils import nested_numpify
from transformers import DefaultDataCollator
from torch.utils.data import DataLoader, DistributedSampler
import numpy as np
import pyarrow as pa
from pyarrow import compute as pc
def calc_cross_entropy_no_reduction(lm_logits, labels):
# calculate cross entropy across batch dim
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss(reduction='none')
loss = loss_fct(shift_logits.permute(0, 2, 1), shift_labels).mean(dim=1)
return loss
def rank0_print(msg):
if dist.get_rank() == 0:
print(msg)
def inference(config):
set_seed(config['seed'])
rank0_print(f"World size: {dist.get_world_size()}")
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'], model_max_length=config['max_length'])
# llama has no pad token, set it to new token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
train_dataset, val_dataset = load_data_for_inference(config, tokenizer)
num_processes = dist.get_world_size()
local_rank = dist.get_rank()
train_sampler = DistributedSampler(train_dataset, shuffle=False, drop_last=True, num_replicas=num_processes, rank=local_rank)
train_dataloader = DataLoader(
train_dataset,
collate_fn=DefaultDataCollator(),
batch_size=config["batch_size"],
sampler=train_sampler,
drop_last=True
)
val_sampler = DistributedSampler(val_dataset, shuffle=False, drop_last=True, num_replicas=num_processes, rank=local_rank)
val_dataloader = DataLoader(
val_dataset,
collate_fn=DefaultDataCollator(),
batch_size=config["batch_size"],
sampler=val_sampler,
drop_last=True
)
model = AutoModelForCausalLM.from_pretrained(config["model_name"],
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
model.to(f"cuda:{local_rank}")
with torch.no_grad():
train_outputs = {"loss": [], "embeddings": [], "index": []}
for batch in tqdm(train_dataloader, disable=local_rank != 0):
batch["input_ids"] = batch["input_ids"].to(f"cuda:{local_rank}")
batch["labels"] = batch["labels"].to(f"cuda:{local_rank}")
outputs = model(input_ids=batch["input_ids"], labels=batch["labels"], output_hidden_states=True)
loss = calc_cross_entropy_no_reduction(outputs.logits, batch["labels"])
train_outputs["loss"].extend(loss)
embeddings = outputs.hidden_states[-1]
batch_size = batch["input_ids"].shape[0]
sequence_lengths = []
# since we use mutiturn with multiple <|endoftext|>, we need to find the place where
# <|endoftext|> is repeated
for item in batch["input_ids"]:
indices = torch.where(item == tokenizer.pad_token_id)[0]
found = False
for index in indices:
# case where sequence is less than max length
if torch.all(item[index:] == tokenizer.pad_token_id):
sequence_lengths.append(index)
found = True
break
# case where sequence is >= max length
if not found:
sequence_lengths.append(len(item) - 1)
sequence_lengths = torch.tensor(sequence_lengths)
pooled_logits = embeddings[torch.arange(batch_size, device=embeddings.device), sequence_lengths]
train_outputs["embeddings"].append(pooled_logits)
train_outputs["index"].extend(batch["index"].to(model.device))
torch.cuda.empty_cache()
train_outputs = nested_numpify(train_outputs)
# stack since they're 0-dim arrays
train_outputs["index"] = np.stack(train_outputs["index"])
train_outputs["loss"] = np.stack(train_outputs["loss"])
train_outputs["embeddings"] = np.concatenate(train_outputs["embeddings"])
df_train = Dataset.from_dict(train_outputs)
curr_idx = df_train["index"]
# compute mask in pyarrow since it's super fast
# ty @bmschmidt for showing me this!
table = train_dataset.data
mask = pc.is_in(table['index'], value_set=pa.array(curr_idx, pa.int32()))
filtered_table = table.filter(mask)
# convert from pyarrow to Dataset
filtered_train = Dataset.from_dict(filtered_table.to_pydict())
filtered_train = filtered_train.add_column("embeddings", df_train["embeddings"])
filtered_train = filtered_train.add_column("loss", df_train["loss"])
filtered_train = filtered_train.add_column("is_train", [True] * len(filtered_train))
filtered_train.to_json(f"inference/epoch_2_embeddings_train_shard_{local_rank}.jsonl", lines=True, orient="records", num_proc=64)
val_outputs = {"loss": [], "embeddings": [], "index": []}
for batch in tqdm(val_dataloader, disable=local_rank != 0):
batch["input_ids"] = batch["input_ids"].to(f"cuda:{local_rank}")
batch["labels"] = batch["labels"].to(f"cuda:{local_rank}")
outputs = model(input_ids=batch["input_ids"], labels=batch["labels"], output_hidden_states=True)
loss = calc_cross_entropy_no_reduction(outputs.logits, batch["labels"])
val_outputs["loss"].extend(loss)
embeddings = outputs.hidden_states[-1]
batch_size = batch["input_ids"].shape[0]
sequence_lengths = []
# since we use mutiturn with multiple <|endoftext|>, we need to find the place where
# <|endoftext|> is repeated
for item in batch["input_ids"]:
indices = torch.where(item == tokenizer.pad_token_id)[0]
found = False
for index in indices:
# case where sequence is less than max length
if torch.all(item[index:] == tokenizer.pad_token_id):
sequence_lengths.append(index)
found = True
break
# case where sequence is >= max length
if not found:
sequence_lengths.append(len(item) - 1)
sequence_lengths = torch.tensor(sequence_lengths)
pooled_logits = embeddings[torch.arange(batch_size, device=embeddings.device), sequence_lengths]
val_outputs["embeddings"].append(pooled_logits)
val_outputs["index"].extend(batch["index"].to(model.device))
torch.cuda.empty_cache()
val_outputs = nested_numpify(val_outputs)
val_outputs["index"] = np.stack(val_outputs["index"])
val_outputs["loss"] = np.stack(val_outputs["loss"])
val_outputs["embeddings"] = np.concatenate(val_outputs["embeddings"])
df_val = Dataset.from_dict(val_outputs)
curr_idx = df_val["index"]
# compute mask in pyarrow since it's super fast
# ty @bmschmidt for showing me this!
table = val_dataset.data
mask = pc.is_in(table['index'], value_set=pa.array(curr_idx, pa.int32()))
filtered_table = table.filter(mask)
# convert from pyarrow to Dataset
filtered_val = Dataset.from_dict(filtered_table.to_pydict())
filtered_val = filtered_val.add_column("embeddings", df_val["embeddings"])
filtered_val = filtered_val.add_column("loss", df_val["loss"])
filtered_val = filtered_val.add_column("is_train", [False] * len(filtered_val))
filtered_val.to_json(f"inference/epoch_2_embeddings_val_shard_{local_rank}.jsonl", lines=True, orient="records", num_proc=64)
def main():
dist.init_process_group("nccl")
parser = ArgumentParser()
parser.add_argument("--config", type=str, default="config.yaml")
args = parser.parse_args()
config = read_config(args.config)
inference(config)
if __name__ == "__main__":
# parse arguments by reading in a config
main()