-
Notifications
You must be signed in to change notification settings - Fork 1
/
FastPeakFind.m
198 lines (174 loc) · 8.59 KB
/
FastPeakFind.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
function [cent, varargout]=FastPeakFind(d, thres, filt ,edg, res, fid)
% Analyze noisy 2D images and find peaks using local maxima (1 pixel
% resolution) or weighted centroids (sub-pixel resolution).
% The code is designed to be as fast as possible, so I kept it pretty basic.
% The code assumes that the peaks are relatively sparse, test whether there
% is too much pile up and set threshold or user defined filter accordingly.
%
% How the code works:
% In theory, each peak is a smooth point spread function (SPF), like a
% Gaussian of some size, etc. In reality, there is always noise, such as
%"salt and pepper" noise, which typically has a 1 pixel variation.
% Because the peak's PSF is assumed to be larger than 1 pixel, the "true"
% local maximum of that PSF can be obtained if we can get rid of these
% single pixel noise variations. There comes medfilt2, which is a 2D median
% filter that gets rid of "salt and pepper" noise. Next we "smooth" the
% image using conv2, so that with high probability there will be only one
% pixel in each peak that will correspond to the "true" PSF local maximum.
% The weighted centroid approach uses the same image processing, with the
% difference that it just calculated the weighted centroid of each
% connected object that was obtained following the image processing. While
% this gives sub-pixel resolution, it can miss peaks that are very close to
% each other, and runs slightly slower. Read more about how to treat these
% cases in the relevant code commentes.
%
% Inputs:
% d The 2D data raw image - assumes a Double\Single-precision
% floating-point, uint8 or unit16 array. Please note that the code
% casts the raw image to uint16 if needed. If the image dynamic range
% is between 0 and 1, I multiplied to fit uint16. This might not be
% optimal for generic use, so modify according to your needs.
% thres A number between 0 and max(raw_image(:)) to remove background
% filt A filter matrix used to smooth the image. The filter size
% should correspond the characteristic size of the peaks
% edg A number>1 for skipping the first few and the last few 'edge' pixels
% res A handle that switches between two peak finding methods:
% 1 - the local maxima method (default).
% 2 - the weighted centroid sub-pixel resolution method.
% Note that the latter method takes ~20% more time on average.
% fid In case the user would like to save the peak positions to a file,
% the code assumes a "fid = fopen([filename], 'w+');" line in the
% script that uses this function.
%
%Optional Outputs:
% cent a 1xN vector of coordinates of peaks (x1,y1,x2,y2,...
% [cent cm] in addition to cent, cm is a binary matrix of size(d)
% with 1's for peak positions. (not supported in the
% the weighted centroid sub-pixel resolution method)
%
%Example:
%
% p=FastPeakFind(image);
% imagesc(image); hold on
% plot(p(1:2:end),p(2:2:end),'r+')
%
% Adi Natan ([email protected])
% Ver 1.7 , Date: Oct 10th 2013
%
%% defaults
if (nargin < 1)
d=uint16(conv2(reshape(single( 2^14*(rand(1,1024*1024)>0.99995) ),[1024 1024]) ,fspecial('gaussian', 15,3),'same')+2^8*rand(1024));
imagesc(d);
end
if ndims(d)>2 %I added this in case one uses imread (JPG\PNG\...).
d=uint16(rgb2gray(d));
end
if isfloat(d) %For the case the input image is double, casting to uint16 keeps enough dynamic range while speeds up the code.
if max(d(:))<=1
d = uint16( d.*2^16./(max(d(:))));
else
d = uint16(d);
end
end
if (nargin < 2)
thres = (max([min(max(d,[],1)) min(max(d,[],2))])) ;
end
if (nargin < 3)
filt = (fspecial('gaussian', 7,1)); %if needed modify the filter according to the expected peaks sizes
end
if (nargin < 4)
edg =3;
end
if (nargin < 5)
res = 1;
end
if (nargin < 6)
savefileflag = false;
else
savefileflag = true;
end
%% Analyze image
if any(d(:)) %for the case of non zero raw image
d = medfilt2(d,[3,3]);
% apply threshold
if isa(d,'uint8')
d=d.*uint8(d>thres);
else
d=d.*uint16(d>thres);
end
if any(d(:)) %for the case of the image is still non zero
% smooth image
d=conv2(single(d),filt,'same') ;
% Apply again threshold (and change if needed according to SNR)
d=d.*(d>0.9*thres);
switch res % switch between local maxima and sub-pixel methods
case 1 % peak find - using the local maxima approach - 1 pixel resolution
% d will be noisy on the edges, and also local maxima looks
% for nearest neighbors so edge must be at least 1. We'll skip 'edge' pixels.
sd=size(d);
[x, y]=find(d(edg:sd(1)-edg,edg:sd(2)-edg));
% initialize outputs
cent=[];%
cent_map=zeros(sd);
x=x+edg-1;
y=y+edg-1;
for j=1:length(y)
if (d(x(j),y(j))>d(x(j)-1,y(j)-1 )) &&...
(d(x(j),y(j))>d(x(j)-1,y(j))) &&...
(d(x(j),y(j))>d(x(j)-1,y(j)+1)) &&...
(d(x(j),y(j))>d(x(j),y(j)-1)) && ...
(d(x(j),y(j))>d(x(j),y(j)+1)) && ...
(d(x(j),y(j))>d(x(j)+1,y(j)-1)) && ...
(d(x(j),y(j))>d(x(j)+1,y(j))) && ...
(d(x(j),y(j))>d(x(j)+1,y(j)+1));
%All these alternatives were slower...
%if all(reshape( d(x(j),y(j))>=d(x(j)-1:x(j)+1,y(j)-1:y(j)+1),9,1))
%if d(x(j),y(j)) == max(max(d((x(j)-1):(x(j)+1),(y(j)-1):(y(j)+1))))
%if d(x(j),y(j)) == max(reshape(d(x(j),y(j)) >= d(x(j)-1:x(j)+1,y(j)-1:y(j)+1),9,1))
cent = [cent ; y(j) ; x(j)];
cent_map(x(j),y(j))=cent_map(x(j),y(j))+1; % if a binary matrix output is desired
end
end
case 2 % find weighted centroids of processed image, sub-pixel resolution.
% no edg requirement needed.
% get peaks areas and centroids
stats = regionprops(logical(d),d,'Area','WeightedCentroid');
% find reliable peaks by considering only peaks with an area
% below some limit. The weighted centroid method can be not
% accurate if peaks are very close to one another, i.e., a
% single peak will be detected, instead of the real number
% of peaks. This will result in a much larger area for that
% peak. At the moment, the code ignores that peak. If that
% happens often consider a different threshold, or return to
% the more robust "local maxima" method.
% To set a proper limit, inspect your data with:
% hist([stats.Area],min([stats.Area]):max([stats.Area]));
% to see if the limit I used (mean+2 standard deviations)
% is an appropriate limit for your data.
rel_peaks_vec=[stats.Area]<=mean([stats.Area])+2*std([stats.Area]);
cent=[stats(rel_peaks_vec).WeightedCentroid]';
cent_map=[];
end
if savefileflag
% previous version used dlmwrite, which can be slower than fprinf
% dlmwrite([filename '.txt'],[cent], '-append', ...
% 'roffset', 0, 'delimiter', '\t', 'newline', 'unix');+
fprintf(fid, '%f ', cent(:));
fprintf(fid, '\n');
end
else % in case image after threshold is all zeros
cent=[];
cent_map=zeros(size(d));
if nargout>1 ; varargout{1}=cent_map; end
return
end
else % in case raw image is all zeros (dead event)
cent=[];
cent_map=zeros(size(d));
if nargout>1 ; varargout{1}=cent_map; end
return
end
%demo mode - no input to the function
if (nargin < 1); colormap(bone);hold on; plot(cent(1:2:end),cent(2:2:end),'rs');hold off; end
% return binary mask of centroid positions if asked for
if nargout>1 ; varargout{1}=cent_map; end