-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain_kaggle.py
executable file
·355 lines (252 loc) · 11.4 KB
/
train_kaggle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import os
import pathlib
import time
import datetime
import numpy as np
from keras import Model, Sequential
from keras.optimizers import Adam
from keras.initializers import RandomNormal
from keras.models import Model
from keras.layers import Conv2D, Conv2DTranspose, ZeroPadding2D, LeakyReLU, Activation, Concatenate, Dropout, BatchNormalization, ReLU, LeakyReLU, Input
from tensorflow.io import read_file, decode_jpeg
import tensorflow as tf
import matplotlib.pyplot as plt
BW_PATH = pathlib.Path(__file__).parent / "kaggleData" / "bw"
COLOR_PATH = pathlib.Path(__file__).parent / "kaggleData" / "color"
BATCH_SIZE = 1
LAMBDA = 100
generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def load(image_file):
"""Read and decode an image file to a uint8 tensor"""
image = read_file(image_file)
image = decode_jpeg(image)
return tf.cast(image, tf.float32)
def resize(image, height, width):
image = tf.image.resize(image,
[height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return image
def normalize(image):
return (image / 127.5) - 1
def load_image(image_file):
image = load(image_file)
image = resize(image, 384, 384)
image = normalize(image)
return image
def load_test_image(image_file):
target = load(image_file)
target = resize(target, 384, 384)
bw = target
if bw.shape[-1] == 3:
bw = tf.image.rgb_to_grayscale(bw)
bw = tf.concat([bw, bw, bw], axis=2)
target = normalize(target)
bw = normalize(bw)
return bw, target
bw_dataset = tf.data.Dataset.list_files(str(BW_PATH / '*.jpg'), shuffle=False)
bw_dataset = bw_dataset.map(
load_image, num_parallel_calls=tf.data.AUTOTUNE, deterministic=True)
bw_dataset = bw_dataset.batch(BATCH_SIZE)
color_dataset = tf.data.Dataset.list_files(
str(COLOR_PATH / '*.jpg'), shuffle=False)
color_dataset = color_dataset.map(
load_image, num_parallel_calls=tf.data.AUTOTUNE, deterministic=True)
color_dataset = color_dataset.batch(BATCH_SIZE)
combined_dataset = tf.data.Dataset.zip((bw_dataset, color_dataset))
def encoder_block(filters, kernel_size, batchnorm=True):
"""Define an encoder block."""
initializer = RandomNormal(0., 0.02, seed=42)
result = Sequential()
result.add(Conv2D(filters,
kernel_size,
strides=2,
padding='same',
kernel_initializer=initializer,
use_bias=False
)
)
if batchnorm:
result.add(BatchNormalization())
result.add(LeakyReLU())
return result
def decoder_block(filters, kernel_size, dropout=False):
"""Define a decoder block."""
initializer = RandomNormal(0., 0.02, seed=42)
result = Sequential()
result.add(Conv2DTranspose(filters, kernel_size,
strides=2,
padding='same',
kernel_initializer=initializer,
use_bias=False)
)
result.add(BatchNormalization())
if dropout:
result.add(Dropout(0.5))
result.add(ReLU())
return result
def Discriminator():
"""Define the discriminator model."""
initializer = RandomNormal(0., 0.02, seed=42)
input = Input(shape=[384, 384, 3], name='input_image')
target = Input(shape=[384, 384, 3], name='target_image')
# (batch_size, 384, 384, channels*2)
x = Concatenate()([input, target])
down1 = encoder_block(64, 4, False)(x) # (batch_size, 192, 192, 64)
down2 = encoder_block(128, 4)(down1) # (batch_size, 96, 96, 128)
down3 = encoder_block(256, 4)(down2) # (batch_size, 48, 48, 256)
down4 = encoder_block(512, 4)(down3) # (batch_size, 24, 24, 512)
zero_pad1 = ZeroPadding2D()(down4) # (batch_size, 26, 26, 512)
conv = Conv2D(512, 4,
strides=(1, 1),
kernel_initializer=initializer,
use_bias=False)(zero_pad1) # (batch_size, 25, 25, 512)
batchnorm1 = BatchNormalization()(conv)
leaky_relu = LeakyReLU()(batchnorm1)
zero_pad2 = ZeroPadding2D()(leaky_relu) # (batch_size, 26, 26, 512)
last = Conv2D(1, 4,
strides=(1, 1),
kernel_initializer=initializer
)(zero_pad2) # (batch_size, 25, 25, 1)
return Model(inputs=[input, target], outputs=last)
def Generator():
"""Define the generator model."""
inputs = Input(shape=[384, 384, 3])
down_stack = [
encoder_block(64, 4, batchnorm=False), # (batch_size, 192, 192, 64)
encoder_block(128, 4), # (batch_size, 96, 96, 128)
encoder_block(256, 4), # (batch_size, 48, 48, 256)
encoder_block(512, 4), # (batch_size, 24, 24, 512)
encoder_block(512, 4), # (batch_size, 12, 12, 512)
encoder_block(512, 4), # (batch_size, 6, 6, 512)
encoder_block(512, 4), # (batch_size, 3, 3, 512)
]
up_stack = [
decoder_block(512, 4, dropout=True), # (batch_size, 6, 6, 1024)
decoder_block(512, 4, dropout=True), # (batch_size, 12, 12, 1024)
decoder_block(512, 4, dropout=True), # (batch_size, 24, 24, 1024)
decoder_block(512, 4), # (batch_size, 48, 48, 1024)
decoder_block(256, 4), # (batch_size, 96, 96, 512)
decoder_block(128, 4), # (batch_size, 192, 192, 256)
decoder_block(64, 4), # (batch_size, 384, 384, 128)
]
initializer = RandomNormal(0., 0.02, seed=42)
last = Conv2DTranspose(filters=3,
kernel_size=4,
strides=2,
padding='same',
kernel_initializer=initializer,
activation='tanh') # (batch_size, 384, 384, 3)
x = inputs
# Downsampling through the model
skips = []
for down in down_stack:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1])
# Upsampling and establishing the skip connections
for up, skip in zip(up_stack, skips):
x = up(x)
x = Concatenate()([x, skip])
x = last(x)
return Model(inputs=inputs, outputs=x)
def generator_loss(disc_generated_output, gen_output, target):
gan_loss = loss_object(tf.ones_like(
disc_generated_output), disc_generated_output)
# Mean absolute error
l1_loss = tf.reduce_mean(tf.abs(target - gen_output))
total_gen_loss = gan_loss + (LAMBDA * l1_loss)
return total_gen_loss, gan_loss, l1_loss
def discriminator_loss(disc_real_output, disc_generated_output):
real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output)
generated_loss = loss_object(tf.zeros_like(
disc_generated_output), disc_generated_output)
total_disc_loss = real_loss + generated_loss
return total_disc_loss
def generate_images(model, test_input, tar):
prediction = model(test_input, training=True)
plt.figure(figsize=(15, 15))
display_list = [test_input[0], tar[0], prediction[0]]
title = ['Input Image', 'Ground Truth', 'Predicted Image']
for i in range(3):
plt.subplot(1, 3, i+1)
plt.title(title[i])
# Getting the pixel values in the [0, 1] range to plot.
plt.imshow(display_list[i] * 0.5 + 0.5)
plt.axis('off')
# plt.show()
plt.savefig(f"pred-{time.time()}.jpg")
def generate_test(model, test_input):
prediction = model(test_input, training=True)
plt.figure(figsize=(15, 15))
display_list = [test_input[0], prediction[0]]
title = ['Input Image', 'Predicted Image']
for i in range(2):
plt.subplot(1, 2, i+1)
plt.title(title[i])
# Getting the pixel values in the [0, 1] range to plot.
plt.imshow(display_list[i] * 0.5 + 0.5)
plt.axis('off')
# plt.show()
plt.savefig(f"pred-{time.time()}.jpg")
generator = Generator()
discriminator = Discriminator()
checkpoint_dir = './test_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)
log_dir = "logs/"
summary_writer = tf.summary.create_file_writer(
log_dir + "fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
@tf.function
def train_step(input_image, target, step):
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
gen_output = generator(input_image, training=True)
disc_real_output = discriminator([input_image, target], training=True)
disc_generated_output = discriminator(
[input_image, gen_output], training=True)
gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(
disc_generated_output, gen_output, target)
disc_loss = discriminator_loss(disc_real_output, disc_generated_output)
generator_gradients = gen_tape.gradient(gen_total_loss,
generator.trainable_variables)
discriminator_gradients = disc_tape.gradient(disc_loss,
discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(generator_gradients,
generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(discriminator_gradients,
discriminator.trainable_variables))
with summary_writer.as_default():
tf.summary.scalar('gen_total_loss', gen_total_loss, step=step//1000)
tf.summary.scalar('gen_gan_loss', gen_gan_loss, step=step//1000)
tf.summary.scalar('gen_l1_loss', gen_l1_loss, step=step//1000)
tf.summary.scalar('disc_loss', disc_loss, step=step//1000)
def fit(dataset, steps):
start = time.time()
for step, (input_image, target) in dataset.repeat().take(steps).enumerate():
if (step) % 100 == 0:
if step != 0:
print(
f'Time taken for 1000 steps: {time.time()-start:.2f} sec\n')
start = time.time()
train_step(input_image, target, step)
# Training step
if (step+1) % 10 == 0:
print('.', end='', flush=True)
# Save (checkpoint) the model every 5k steps
if (step + 1) % 5000 == 0:
checkpoint.save(file_prefix=checkpoint_prefix)
# checkpoint.restore("./kaggle_checkpoints/ckpt-21")
# fit(combined_dataset, steps=101)
TEST_DIR_BW = pathlib.Path(__file__).parent / "test_images" / "bw"
TEST_DIR_COLOR = pathlib.Path(__file__).parent / "test_images" / "color"
# Code for generating some predictions
# for path in os.listdir():
# if path.endswith('.jpg') or path.endswith('.jpeg'):
# bw, target = load_test_image(path)
# bw = tf.expand_dims(bw, axis=0)
# target = tf.expand_dims(target, axis=0)
# generate_images(generator, bw, target)