-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
270 lines (223 loc) · 10.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import pandas as pd
import numpy as np
import os
import argparse
import json
import torch
from torch import nn
import time
from tqdm import tqdm
import datetime
from gesture_dataset import GestureDataset
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
import itertools
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
import torch.distributed as dist
import schedulefree
from model import MyEncoder, MyDecoder, EncodecModel
from qt import ResidualVectorQuantizer, DummyQuantizer
from transformers import get_constant_schedule_with_warmup
def save_checkpoint(model, epoch, rank):
if rank == 0:
torch.save(model.module.state_dict(), f"/local2/abzaliev/saved_models/hard_and_yes_ctc_{str(epoch)}.pt")
def batch_to_device(batch, device):
batch_dict = {key: batch[key].to(device) for key in batch}
return batch_dict
def run_epoch(loader, model, optimizer, adversary, balancer, scheduler, epoch, device_id, is_train=True):
loader.sampler.set_epoch(epoch)
start = time.time()
torch.set_grad_enabled(is_train)
# this if-else below is requirememnt from shedulefree tokenizer, see their docs
if is_train:
model.train()
optimizer.train()
else:
optimizer.eval()
model.train()
optimizer.eval()
with torch.no_grad():
for batch in itertools.islice(loader, 50):
model(batch)
model.eval()
running_loss = 0
running_disc_loss = 0
# I experimented with other losses as well the difference is minor
mse = torch.nn.SmoothL1Loss(reduction='none') # torch.nn.MSELoss(reduction='none') # # torch.nn.HuberLoss(reduction='none', delta=0.1)
batch_size = loader.batch_size
quantizer_loss = 0
reconstruct_loss = 0
disc_loss = 0
disc_counter = 0
inv_weight = 16.0 # basically just lambda how
runnin_ctc_loss = 0
ctc_loss = nn.CTCLoss(blank=59, zero_infinity=True)
for ix, batch in (pbar := tqdm(enumerate(loader), total=len(loader))):
bs = batch['input'].shape[0]
del (batch['phrase'])
local_step = ((ix + 1) * batch_size)
mask = batch['input_mask'].long()
batch = batch_to_device(batch, device=device_id)
y = batch['input'].clone() # self.model.encoder.feature_extractor(x['input'], x['input_mask'].long()).transpose(1,2)
# this is for CTC loss
targets = batch['token_ids']
target_mask = batch['attention_mask']
target_lengths = target_mask.sum(axis=-1).long()
input_lengths = mask.sum(axis=-1)
y_mask = mask.clone()
qres, log_probs = model(batch)
y_pred = qres.x
loss = mse(y, y_pred)
# masking for padding
loss = (loss.cpu() * mask.unsqueeze(-1).unsqueeze(-1)).sum()
non_zero_elements = mask.sum()
loss = ((loss / non_zero_elements))
reconstruct_loss += loss.detach()
ctc = ctc_loss(log_probs, targets, input_lengths, target_lengths).cpu()
runnin_ctc_loss += ctc.detach()
loss += ctc
# penalty from quantization
quantizer_loss += qres.penalty.cpu().detach()
loss += ((qres.penalty.cpu())/inv_weight)
running_loss += (float(loss.detach()))
# gradient
# I think it is related to torchrun
if is_train:
loss.backward()
tb_writer.add_scalar('grad_norm', torch.stack(
[p.grad.detach().norm() for p in model.module.parameters() if p.grad is not None]).norm().item(), epoch)
torch.nn.utils.clip_grad_norm_(model.parameters(), 4.0)
optimizer.step()
optimizer.zero_grad()
scheduler.step(epoch + ix / len(loader.dataset))
status = '{} {}'.format('Train' if is_train else 'Valid', epoch) # : {:<6}/ {} , local_step, len(pbar)
status += ' l: {:.4f} avg_l: {:.4f} lr {}'.format(
loss.item(), # print batch loss and avg loss
running_loss / ((ix + 1.0)), # print batch loss and avg loss
str(optimizer.param_groups[0]['lr'])[:7])
pbar.set_description(status)
disc_counter += 1
avg_loss = running_loss / ((ix + 1.0))
# avg_disc_loss = running_disc_loss / ((ix + 1.0))
tb_writer.add_scalar('lr', optimizer.param_groups[0]["lr"], epoch)
if is_train:
tb_writer.add_scalar('loss/train', avg_loss, epoch)
tb_writer.add_scalar('quantizer_loss/train', quantizer_loss / ((ix + 1.0)), epoch)
tb_writer.add_scalar('reconstruct_loss/train', reconstruct_loss / ((ix + 1.0)), epoch)
tb_writer.add_scalar('disc_loss/train', disc_loss / ((ix + 1.0)), epoch)
tb_writer.add_scalar('ctc_loss/train', runnin_ctc_loss / ((ix + 1.0)), epoch)
# tb_writer.add_scalar('loss/disc', avg_disc_loss, epoch)
else:
tb_writer.add_scalar('quantizer_loss/val', quantizer_loss / ((ix + 1.0)), epoch)
tb_writer.add_scalar('loss/val', avg_loss, epoch)
tb_writer.add_scalar('disc_loss/val', disc_loss / ((ix + 1.0)), epoch)
tb_writer.add_scalar('reconstruct_loss/val', reconstruct_loss / ((ix + 1.0)), epoch)
tb_writer.add_scalar('ctc_loss/val', runnin_ctc_loss / ((ix + 1.0)), epoch)
return avg_loss
def run(args):
init_process_group(backend='nccl')
rank = dist.get_rank()
device_id = rank % torch.cuda.device_count()
tb_writer = args.tb_writer
batch_size = args.batch_size // args.num_gpus
train_ds = GestureDataset(args.train_df, cfg=args.kaggle_gesture_cfg_train, mode="train")
val_ds = GestureDataset(args.val_df, cfg=args.kaggle_gesture_cfg_val, mode="test")
train_loader = DataLoader(train_ds, batch_size=batch_size, num_workers=16, collate_fn=None,
sampler=DistributedSampler(train_ds, shuffle=True))
val_loader = DataLoader(val_ds, batch_size=batch_size, num_workers=8, collate_fn=None, shuffle=False,
sampler=DistributedSampler(val_ds, shuffle=False))
encoder = MyEncoder(channels=42, dimension=128)
decoder = MyDecoder(channels=42, dimension=128)
quantizer = ResidualVectorQuantizer(dimension=encoder.dimension, q_dropout=True, bins=1024, n_q=4)
model = EncodecModel(encoder, decoder, quantizer, frame_rate=10, sample_rate=10, channels=42)
model.to(device_id)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = DDP(model, device_ids=[device_id])
optimizer = schedulefree.AdamWScheduleFree(model.parameters(), lr=1e-3)
scheduler = get_constant_schedule_with_warmup(optimizer, num_warmup_steps=50) # CosineAnnealingLR(optimizer, T_max=300)
balancer = None
# balancer = Balancer({'adv': 1, 'rec': 1})
adv_loss = None
train_losses = list()
val_losses = list()
prev_loss = 100000
for epoch in range(0, 200):
train_loss = run_epoch(train_loader, model, optimizer, adv_loss, balancer, scheduler, epoch, device_id, is_train=True)
train_losses.append(train_loss)
val_loss = run_epoch(val_loader, model, optimizer, adv_loss, balancer, scheduler, epoch, device_id, is_train=False)
val_losses.append(val_loss)
if val_loss < prev_loss:
save_checkpoint(model, epoch, rank)
prev_loss = val_loss
if __name__ == "__main__":
tb_writer = SummaryWriter(log_dir='./new_tb_runs/' + 'back_to_200' + str(datetime.datetime.now().strftime('%d %B %H:%M')))
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "2,3"
# dataset
sample_rate = 10 # cfg.sample_rate
channels = 42 # cfg.channelsmse_loss
seed = 42
max_sample_rate = 15
max_channels = 42
# load dfs
datamount_path = "/local2/abzaliev/sign_lang/kaggle-asl-fingerspelling-1st-place-solution/datamount"
df = pd.read_csv(os.path.join(datamount_path, "train_folded_real_lens.csv"))
# df['is_sup'] = 0
train_df = df[(df["fold"] != 3) & (df["fold"] != 2)].copy()# .head(2000)
val_df = df[df["fold"] == 3].copy()# .head(2000)
# this is the same for both train and validation
with open(os.path.join(datamount_path, 'character_to_prediction_index.json'), "r") as f:
char_to_num = json.load(f)
# rev_character_map = {j: i for i, j in char_to_num.items()}
with open('/local2/abzaliev/sign_lang/kaggle-asl-fingerspelling-1st-place-solution/datamount/character_to_prediction_index.json',
"r") as f:
char_to_num = json.load(f)
rev_character_map = {j: i for i, j in char_to_num.items()}
n = len(char_to_num)
pad_token = 'P'
start_token = 'S'
end_token = 'E'
char_to_num[pad_token] = n
char_to_num[start_token] = n + 1
char_to_num[end_token] = n + 2
num_to_char = {j: i for i, j in char_to_num.items()}
chars = np.array([num_to_char[i] for i in range(len(num_to_char))])
kaggle_gesture_cfg_train = {
'min_seq_len': 15,
'data_folder': '/local2/abzaliev/sign_lang/train_landmarks_npy_even_less/',
'symmetry_fp': os.path.join(datamount_path, 'symmetry.csv'),
'max_len': 196,
'flip_aug': 0.25,
'outer_cutmix_aug': 0.0,
'max_phrase': 31 + 2,
'pad_token': 'P',
'start_token': 'S',
'end_token': 'E',
'tokenizer': [char_to_num, num_to_char, chars]
}
kaggle_gesture_cfg_val = {
'min_seq_len': 15,
'data_folder': '/local2/abzaliev/sign_lang/train_landmarks_npy_even_less/',
'symmetry_fp': os.path.join(datamount_path, 'symmetry.csv'),
'max_len': 196,
'flip_aug': 0.25,
'outer_cutmix_aug': 0.0,
'max_phrase': 31 + 2,
'pad_token': 'P',
'start_token': 'S',
'end_token': 'E',
'tokenizer': [char_to_num, num_to_char, chars]
}
parser = argparse.ArgumentParser()
args = parser.parse_args()
args.num_gpus = torch.cuda.device_count()
args.batch_size = int(22)
args.train_df = train_df
args.val_df = val_df
args.batch_size = int(args.batch_size * args.num_gpus)
args.kaggle_gesture_cfg_train = kaggle_gesture_cfg_train
args.kaggle_gesture_cfg_val = kaggle_gesture_cfg_val
args.tb_writer = tb_writer
run(args)