-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdriversboot.cpp
1124 lines (987 loc) · 24.2 KB
/
driversboot.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Author - Mike Blandford
*
* Based on er9x by Erez Raviv <[email protected]>
*
* Based on th9x -> http://code.google.com/p/th9x/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <stdint.h>
#include <stdlib.h>
#ifdef PCBSKY
#include "radio.h"
#include "drivers.h"
#include "AT91SAM3S4.h"
#endif
#if ( defined(PCBX9D) || defined(PCB9XT) )
#include "radio.h"
#include "hal.h"
#include "stm32f2xx.h"
#include "stm32f2xx_gpio.h"
#include "stm32f2xx_rcc.h"
#include "drivers.h"
#endif
#if defined(PCBX12D) || defined(PCBX10)
#include "radio.h"
#include "hal.h"
#include "stm32f4xx.h"
#include "stm32f4xx_gpio.h"
#include "stm32f4xx_rcc.h"
#include "drivers.h"
#endif
#include "logicio.h"
#ifdef EVT_KEY_MASK
#undef EVT_KEY_MASK
#endif
#define EVT_KEY_MASK 0x0f
volatile uint32_t Spi_complete ;
void b_putEvent( register uint8_t evt) ;
void per10ms( void ) ;
uint8_t getEvent( void ) ;
void pauseEvents(uint8_t event) ;
void killEvents(uint8_t event) ;
uint8_t s_evt;
void b_putEvent( uint8_t evt)
{
s_evt = evt;
}
#ifdef PCBX12D
volatile int32_t Rotary_position ;
volatile int32_t Rotary_count ;
int32_t LastRotaryValue ;
int32_t Rotary_diff ;
void init_rotary_encoder()
{
configure_pins( 0x0C00, PIN_INPUT | PIN_PULLUP | PIN_PORTH ) ;
configure_pins( 0x0002, PIN_INPUT | PIN_PULLUP | PIN_PORTC ) ;
}
void checkRotaryEncoder()
{
register uint32_t dummy ;
dummy = GPIOENCODER->IDR ; // Read Rotary encoder ( PE11, PE9 )
dummy >>= 10 ;
// dummy = (dummy & 1) | ( ( dummy >> 1 ) & 2 ) ; // pick out the two bits
dummy &= 0x03 ;
if ( dummy != ( Rotary_position & 0x03 ) )
{
if ( ( Rotary_position & 0x01 ) ^ ( ( dummy & 0x02) >> 1 ) )
{
Rotary_count -= 1 ;
}
else
{
Rotary_count += 1 ;
}
Rotary_position &= ~0x03 ;
Rotary_position |= dummy ;
}
}
#endif // PCBX12D
#ifdef PCBX10
volatile int32_t Rotary_position ;
volatile int32_t Rotary_count ;
int32_t LastRotaryValue ;
int32_t Rotary_diff ;
void init_rotary_encoder()
{
register uint32_t dummy ;
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOHEN | RCC_AHB1ENR_GPIOIEN ;
configure_pins( 0x0C00, PIN_INPUT | PIN_PULLUP | PIN_PORTH ) ;
configure_pins( KEYS_GPIO_PIN_ENTER, PIN_INPUT | PIN_PULLUP | PIN_PORTI ) ;
dummy = GPIOENCODER->IDR ; // Read Rotary encoder ( PE11, PE9 )
dummy >>= 10 ;
dummy &= 0x03 ;
Rotary_position &= ~0x03 ;
Rotary_position |= dummy ;
}
void checkRotaryEncoder()
{
register uint32_t dummy ;
dummy = GPIOENCODER->IDR ; // Read Rotary encoder ( PE11, PE9 )
dummy >>= 10 ;
// dummy = (dummy & 1) | ( ( dummy >> 1 ) & 2 ) ; // pick out the two bits
dummy &= 0x03 ;
// For T16!
if ( dummy != ( Rotary_position & 0x03 ) )
{
if ( ( dummy & 0x01 ) ^ ( ( dummy & 0x02) >> 1 ) )
{
if ( (Rotary_position & 0x03) == 3 )
{
Rotary_count += 1 ;
}
else
{
Rotary_count -= 1 ;
}
}
else
{
if ( (Rotary_position & 0x03) == 3 )
{
Rotary_count -= 1 ;
}
if ( (Rotary_position & 0x03) == 0 )
{
Rotary_count += 1 ;
}
}
Rotary_position &= ~0x03 ;
Rotary_position |= dummy ;
}
}
#endif // PCBX10
uint16_t WatchdogTimer ;
#ifdef PCBSKY
volatile int32_t Rotary_position ;
volatile int32_t Rotary_count ;
int32_t LastRotaryValue ;
int32_t Rotary_diff ;
void init_rotary_encoder()
{
// register uint32_t dummy;
configure_pins( PIO_PC19 | PIO_PC21, PIN_ENABLE | PIN_INPUT | PIN_PORTC | PIN_PULLUP ) ; // 19 and 21 are rotary encoder
configure_pins( PIO_PB6, PIN_ENABLE | PIN_INPUT | PIN_PORTB | PIN_PULLUP ) ; // rotary encoder switch
// PIOC->PIO_IER = PIO_PC19 | PIO_PC21 ;
// dummy = PIOC->PIO_PDSR ; // Read Rotary encoder (PC19, PC21)
// dummy >>= 19 ;
// dummy &= 0x05 ; // pick out the three bits
// Rotary_position &= ~0x45 ;
// Rotary_position |= dummy ;
// NVIC_SetPriority( PIOC_IRQn, 1 ) ; // Lower priority interrupt
// NVIC_EnableIRQ(PIOC_IRQn) ;
// LastRotaryValue = Rotary_count ;
}
void checkRotaryEncoder()
{
register uint32_t dummy ;
dummy = PIOC->PIO_PDSR ; // Read Rotary encoder (PC19, PC21)
dummy >>= 19 ;
dummy &= 0x05 ; // pick out the three bits
if ( dummy != ( Rotary_position & 0x05 ) )
{
if ( ( Rotary_position & 0x01 ) ^ ( ( dummy & 0x04) >> 2 ) )
{
Rotary_count -= 1 ;
}
else
{
Rotary_count += 1 ;
}
Rotary_position &= ~0x45 ;
Rotary_position |= dummy ;
}
}
#endif
#if (defined(REV9E) || defined(PCBX7) || defined(PCBX9LITE))
volatile int32_t Rotary_position ;
volatile int32_t Rotary_count ;
int32_t LastRotaryValue ;
int32_t Rotary_diff ;
#ifdef PCBX7
#ifndef PCBT12
void init_rotary_encoder()
{
configure_pins( 0x0A00, PIN_INPUT | PIN_PULLUP | PIN_PORTE ) ;
// g_eeGeneral.rotaryDivisor = 2 ;
}
void checkRotaryEncoder()
{
register uint32_t dummy ;
dummy = GPIOENCODER->IDR ; // Read Rotary encoder ( PE11, PE9 )
dummy >>= 9 ;
dummy = (dummy & 1) | ( ( dummy >> 1 ) & 2 ) ; // pick out the two bits
if ( dummy != ( Rotary_position & 0x03 ) )
{
if ( ( Rotary_position & 0x01 ) ^ ( ( dummy & 0x02) >> 1 ) )
{
Rotary_count -= 1 ;
}
else
{
Rotary_count += 1 ;
}
Rotary_position &= ~0x03 ;
Rotary_position |= dummy ;
}
}
#endif
#else // PCBX7
#ifdef PCBX9LITE
void init_rotary_encoder()
{
configure_pins( 0x1C00, PIN_INPUT | PIN_PULLUP | PIN_PORTE ) ;
}
void checkRotaryEncoder()
{
register uint32_t dummy ;
dummy = GPIOENCODER->IDR ; // Read Rotary encoder ( PE12, PE10 )
dummy >>= 10 ;
dummy = (dummy & 1) | ( ( dummy >> 1 ) & 2 ) ; // pick out the two bits
if ( dummy != ( Rotary_position & 0x03 ) )
{
if ( ( Rotary_position & 0x01 ) ^ ( ( dummy & 0x02) >> 1 ) )
{
Rotary_count += 1 ;
}
else
{
Rotary_count -= 1 ;
}
Rotary_position &= ~0x03 ;
Rotary_position |= dummy ;
}
}
#else // X3
void init_rotary_encoder()
{
// configure_pins( 0x0060, PIN_INPUT | PIN_PULLUP | PIN_PORTE ) ;
configure_pins( 0x3000, PIN_INPUT | PIN_PULLUP | PIN_PORTD ) ;
// g_eeGeneral.rotaryDivisor = 2 ;
}
void checkRotaryEncoder()
{
register uint32_t dummy ;
dummy = GPIOENCODER->IDR ; // Read Rotary encoder ( PE6, PE5 )
// dummy >>= 5 ;
dummy >>= 12 ;
dummy &= 0x03 ; // pick out the two bits
if ( dummy != ( Rotary_position & 0x03 ) )
{
if ( ( Rotary_position & 0x01 ) ^ ( ( dummy & 0x02) >> 1 ) )
{
Rotary_count -= 1 ;
// Rotary_count += 1 ;
}
else
{
Rotary_count += 1 ;
// Rotary_count -= 1 ;
}
Rotary_position &= ~0x03 ;
Rotary_position |= dummy ;
}
}
#endif // X3
#endif // PCBX7
uint8_t LastEvt ;
uint8_t getEvent()
{
register uint8_t evt = s_evt;
s_evt=0;
#ifndef PCBT12
checkRotaryEncoder() ;
{
int32_t x ;
#ifndef PCBX9LITE
x = Rotary_count >> 1 ;
#else
x = Rotary_count >> 1 ;
#endif
Rotary_diff = x - LastRotaryValue ;
LastRotaryValue = x ;
}
if ( evt == 0 )
{
extern int32_t Rotary_diff ;
if ( Rotary_diff > 0 )
{
evt = EVT_KEY_FIRST(KEY_MINUS) ;
}
else if ( Rotary_diff < 0 )
{
evt = EVT_KEY_FIRST(KEY_PLUS) ;
}
Rotary_diff = 0 ;
}
#endif
if ( evt != 0 )
{
LastEvt = evt ;
}
return evt;
}
#else
uint8_t LastEvt ;
uint8_t getEvent()
{
register uint8_t evt = s_evt;
s_evt=0;
#ifdef PCBSKY
{
int32_t x ;
x = Rotary_count >> 2 ;
Rotary_diff = x - LastRotaryValue ;
LastRotaryValue = x ;
}
if ( evt == 0 )
{
extern int32_t Rotary_diff ;
if ( Rotary_diff > 0 )
{
evt = EVT_KEY_FIRST(KEY_DOWN) ;
}
else if ( Rotary_diff < 0 )
{
evt = EVT_KEY_FIRST(KEY_UP) ;
}
Rotary_diff = 0 ;
}
if ( evt != 0 )
{
LastEvt = evt ;
}
#endif
#if defined(PCBX12D) || defined(PCBX10)
{
int32_t x ;
x = Rotary_count >> 1 ;
Rotary_diff = x - LastRotaryValue ;
LastRotaryValue = x ;
}
if ( evt == 0 )
{
extern int32_t Rotary_diff ;
if ( Rotary_diff > 0 )
{
evt = EVT_KEY_FIRST(KEY_MINUS) ;
}
else if ( Rotary_diff < 0 )
{
evt = EVT_KEY_FIRST(KEY_PLUS) ;
}
Rotary_diff = 0 ;
}
if ( evt != 0 )
{
LastEvt = evt ;
}
#endif
return evt;
}
#endif
Key keys[NUM_KEYS] ;
void Key::input(bool val, EnumKeys enuk)
{
// uint8_t old=m_vals;
m_vals <<= 1; if(val) m_vals |= 1; //portbit einschieben
m_cnt++;
if(m_state && m_vals==0){ //gerade eben sprung auf 0
if(m_state!=KSTATE_KILLED) {
b_putEvent(EVT_KEY_BREAK(enuk));
}
m_cnt = 0;
m_state = KSTATE_OFF;
}
switch(m_state){
case KSTATE_OFF:
if(m_vals==FFVAL){ //gerade eben sprung auf ff
m_state = KSTATE_START;
m_cnt = 0;
}
break;
//fallthrough
case KSTATE_START:
b_putEvent(EVT_KEY_FIRST(enuk));
#ifdef KSTATE_RPTDELAY
m_state = KSTATE_RPTDELAY;
#else
m_state = 16;
#endif
m_cnt = 0;
break;
#ifdef KSTATE_RPTDELAY
case KSTATE_RPTDELAY: // gruvin: longer delay before first key repeat
if(m_cnt == 32) b_putEvent(EVT_KEY_LONG(enuk)); // need to catch this inside RPTDELAY time
if (m_cnt == 40) {
m_state = 16;
m_cnt = 0;
}
break;
#endif
case 16:
#ifndef KSTATE_RPTDELAY
if(m_cnt == 32) b_putEvent(EVT_KEY_LONG(enuk));
//fallthrough
#endif
case 8:
case 4:
case 2:
if(m_cnt >= 48) { //3 6 12 24 48 pulses in every 480ms
m_state >>= 1;
m_cnt = 0;
}
//fallthrough
case 1:
if( (m_cnt & (m_state-1)) == 0) b_putEvent(EVT_KEY_REPT(enuk));
break;
case KSTATE_PAUSE: //pause
if(m_cnt >= 64) {
m_state = 8;
m_cnt = 0;
}
break;
case KSTATE_KILLED: //killed
break;
}
}
#ifdef APP
void pauseEvents(uint8_t event)
#else
void b_pauseEvents(uint8_t event)
#endif
{
event=event & EVT_KEY_MASK;
if(event < (int)DIM(keys)) keys[event].pauseEvents();
}
void killEvents(uint8_t event)
{
event=event & EVT_KEY_MASK;
if(event < (int)DIM(keys)) keys[event].killEvents();
}
#ifdef APP
uint8_t menuPressed()
{
if ( keys[KEY_MENU].isKilled() )
{
return 0 ;
}
return ( read_keys() & 2 ) == 0 ;
}
uint32_t keyState(EnumKeys enuk)
{
if(enuk < (int)DIM(keys)) return keys[enuk].state() ? 1 : 0 ;
return 0 ;
}
#endif
void per10ms()
{
register uint32_t i ;
if ( WatchdogTimer )
{
wdt_reset() ;
WatchdogTimer -= 1 ;
}
uint8_t enuk = KEY_MENU;
uint8_t in = ~read_keys() & 0x7E ;
// Bits 3-6 are down, up, right and left
// Try to only allow one at a
#ifdef REVX
static uint8_t current ;
uint8_t dir_keys ;
uint8_t lcurrent ;
dir_keys = in & 0x78 ; // Mask to direction keys
if ( ( lcurrent = current ) )
{ // Something already pressed
if ( ( lcurrent & dir_keys ) == 0 )
{
lcurrent = 0 ; // No longer pressed
}
else
{
in &= lcurrent | 0x06 ; // current or MENU or EXIT allowed
}
}
if ( lcurrent == 0 )
{ // look for a key
if ( dir_keys & 0x20 ) // right
{
lcurrent = 0x60 ; // Allow L and R for 9X
}
else if ( dir_keys & 0x40 ) // left
{
lcurrent = 0x60 ; // Allow L and R for 9X
}
else if ( dir_keys & 0x08 ) // down
{
lcurrent = 0x08 ;
}
else if ( dir_keys & 0x10 ) // up
{
lcurrent = 0x10 ;
}
in &= lcurrent | 0x06 ; // current or MENU or EXIT allowed
}
current = lcurrent ;
#endif
extern uint32_t readTrainerSwitch( void ) ;
if ( readTrainerSwitch() )
{
in |= 0x80 ;
}
for( i=1; i<8; i++)
{
uint8_t value = in & (1<<i) ;
//INP_B_KEY_MEN 1 .. INP_B_KEY_LFT 6
keys[enuk].input(value,(EnumKeys)enuk);
++enuk;
}
#ifdef REV9E
uint8_t value = ~GPIOF->IDR & PIN_BUTTON_ENCODER ;
keys[BTN_RE].input( value,(EnumKeys)BTN_RE); // Rotary Enc. Switch
#endif
#ifdef PCBSKY
// checkRotaryEncoder() ;
uint8_t value = ~PIOB->PIO_PDSR & 0x40 ;
keys[BTN_RE].input( value,(EnumKeys)BTN_RE); // Rotary Enc. Switch
#endif
#if defined(PCBX12D) || defined(PCBX10)
uint8_t value = (~KEYS_GPIO_REG_ENTER & KEYS_GPIO_PIN_ENTER) ? 1 : 0 ;
keys[BTN_RE].input( value,(EnumKeys)BTN_RE); // Rotary Enc. Switch
#endif
#ifdef PCBX9LITE
uint8_t value = (~GPIOE->IDR & PIN_BUTTON_ENCODER) ? 1 : 0 ;
keys[BTN_RE].input( value,(EnumKeys)BTN_RE); // Rotary Enc. Switch
#endif // X3
#ifdef APP
#ifdef PCB9XT
extern uint16_t M64Switches ;
uint8_t value = (M64Switches & 0x0200) ? 1 : 0 ;
keys[BTN_RE].input( value,(EnumKeys)BTN_RE); // Rotary Enc. Switch
#endif
#endif
}
#ifdef PCB9XT
int32_t get_fifo64( struct t_fifo64 *pfifo )
{
int32_t rxbyte ;
if ( pfifo->in != pfifo->out ) // Look for char available
{
rxbyte = pfifo->fifo[pfifo->out] ;
pfifo->out = ( pfifo->out + 1 ) & 0x3F ;
return rxbyte ;
}
return -1 ;
}
void eeprom_write_enable() ;
uint32_t eeprom_write_one( uint8_t byte, uint8_t count ) ;
uint32_t spi_operation( register uint8_t *tx, register uint8_t *rx, register uint32_t count ) ;
void init_spi()
{
register uint8_t *p ;
uint8_t spi_buf[4] ;
// SPI_InitTypeDef SPI_InitStructure;
// GPIO_InitTypeDef GPIO_InitStructure;
/* Enable GPIO clock for CS */
RCC_AHB1PeriphClockCmd( RCC_AHB1Periph_GPIOA, ENABLE);
/* Enable GPIO clock for Signals */
RCC_AHB1PeriphClockCmd( RCC_AHB1Periph_GPIOB, ENABLE);
/* Enable SPI clock, SPI1: APB2, SPI2: APB1 */
RCC->APB2ENR |= RCC_APB2ENR_SPI1EN ; // Enable clock
// APB1 clock / 2 = 133nS per clock
SPI1->CR1 = 0 ; // Clear any mode error
SPI1->CR2 = 0 ;
SPI1->CR1 = SPI_CR1_SSM | SPI_CR1_SSI | SPI_CR1_CPOL | SPI_CR1_CPHA ;
SPI1->CR1 |= SPI_CR1_MSTR ; // Make sure in case SSM/SSI needed to be set first
SPI1->CR1 |= SPI_CR1_SPE ;
configure_pins( GPIO_Pin_SPI_EE_CS, PIN_PUSHPULL | PIN_OS25 | PIN_OUTPUT | PIN_PORTA ) ;
GPIOA->BSRRL = GPIO_Pin_SPI_EE_CS ; // output disable
configure_pins( GPIO_Pin_SPI_EE_SCK | GPIO_Pin_SPI_EE_MOSI, PIN_PUSHPULL | PIN_OS25 | PIN_PERIPHERAL | PIN_PORTB | PIN_PER_5 ) ;
configure_pins( GPIO_Pin_SPI_EE_MISO, PIN_PERIPHERAL | PIN_PORTB | PIN_PULLUP | PIN_PER_5 ) ;
RCC->AHB1ENR |= RCC_AHB1ENR_DMA2EN ; // Enable DMA2 clock
NVIC_SetPriority( DMA2_Stream0_IRQn, 1 ) ; // priority interrupt
NVIC_EnableIRQ( DMA2_Stream0_IRQn ) ;
NVIC_SetPriority( DMA2_Stream3_IRQn, 1 ) ; // priority interrupt
NVIC_EnableIRQ( DMA2_Stream3_IRQn ) ;
p = spi_buf ;
eeprom_write_enable() ;
*p = 1 ; // Write status register command
*(p+1) = 0 ;
spi_operation( p, spi_buf, 2 ) ;
GPIOA->BSRRL = GPIO_Pin_SPI_EE_CS ; // output disable
//#ifdef STM32_SD_USE_DMA
// /* enable DMA clock */
// RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
//#endif
}
uint32_t spi_operation( register uint8_t *tx, register uint8_t *rx, register uint32_t count )
{
register SPI_TypeDef *spiptr = SPI1 ;
register uint32_t result ;
GPIOA->BSRRH = GPIO_Pin_SPI_EE_CS ; // output enable
(void) spiptr->DR ; // Dump any rx data
while( count )
{
result = 0 ;
while( ( spiptr->SR & SPI_SR_TXE ) == 0 )
{
// wait
if ( ++result > 10000 )
{
result = 0xFFFF ;
break ;
}
}
if ( result > 10000 )
{
break ;
}
// if ( count == 1 )
// {
// spiptr->SPI_CR = SPI_CR_LASTXFER ; // LastXfer bit
// }
spiptr->DR = *tx++ ;
result = 0 ;
while( ( spiptr->SR & SPI_SR_RXNE ) == 0 )
{
// wait for received
if ( ++result > 10000 )
{
result = 0x2FFFF ;
break ;
}
}
if ( result > 10000 )
{
break ;
}
*rx++ = spiptr->DR ;
count -= 1 ;
}
if ( result <= 10000 )
{
result = 0 ;
}
result = 0 ;
return result ;
}
void eeprom_write_enable()
{
eeprom_write_one( 6, 0 ) ;
GPIOA->BSRRL = GPIO_Pin_SPI_EE_CS ; // output disable
}
uint32_t eeprom_read_status()
{
uint32_t result ;
result = eeprom_write_one( 5, 1 ) ;
GPIOA->BSRRL = GPIO_Pin_SPI_EE_CS ; // output disable
return result ;
}
uint32_t eeprom_write_one( uint8_t byte, uint8_t count )
{
register SPI_TypeDef *spiptr = SPI1 ;
register uint32_t result ;
GPIOA->BSRRH = GPIO_Pin_SPI_EE_CS ; // output enable
(void) spiptr->DR ; // Dump any rx data
spiptr->DR = byte ;
result = 0 ;
while( ( spiptr->SR & SPI_SR_RXNE ) == 0 )
{
// wait for received
if ( ++result > 10000 )
{
break ;
}
}
if ( count == 0 )
{
return spiptr->DR ;
}
(void) spiptr->DR ; // Dump the rx data
spiptr->DR = 0 ;
result = 0 ;
while( ( spiptr->SR & SPI_SR_RXNE ) == 0 )
{
// wait for received
if ( ++result > 10000 )
{
break ;
}
}
return spiptr->DR ;
}
uint32_t spi_PDC_action( uint8_t *command, uint8_t *tx, uint8_t *rx, uint32_t comlen, uint32_t count )
{
static uint8_t discard_rx_command[4] ;
Spi_complete = 0 ;
if ( comlen > 4 )
{
Spi_complete = 1 ;
return 0x4FFFF ;
}
GPIOA->BSRRH = GPIO_Pin_SPI_EE_CS ; // output enable
DMA2_Stream0->CR &= ~DMA_SxCR_EN ; // Disable DMA
DMA2_Stream3->CR &= ~DMA_SxCR_EN ; // Disable DMA
spi_operation( command, discard_rx_command, comlen ) ; // send command
if ( rx )
{
DMA2_Stream0->CR = DMA_SxCR_CHSEL_1 | DMA_SxCR_CHSEL_0 | DMA_SxCR_PL_0
| DMA_SxCR_MINC ;
DMA2_Stream0->PAR = (uint32_t) &SPI1->DR ;
DMA2_Stream0->M0AR = (uint32_t) rx ;
DMA2_Stream0->NDTR = count ;
DMA2->LIFCR = DMA_LIFCR_CTCIF0 | DMA_LIFCR_CHTIF0 | DMA_LIFCR_CTEIF0 | DMA_LIFCR_CDMEIF0 | DMA_LIFCR_CFEIF0 ; // Write ones to clear bits
SPI1->CR2 |= SPI_CR2_RXDMAEN ;
DMA2_Stream0->CR |= DMA_SxCR_EN ; // Enable DMA
}
if ( tx )
{
DMA2_Stream3->M0AR = (uint32_t) tx ;
}
else
{
DMA2_Stream3->M0AR = (uint32_t) rx ;
}
DMA2_Stream3->NDTR = count ;
DMA2_Stream3->CR = DMA_SxCR_CHSEL_1 | DMA_SxCR_CHSEL_0 | DMA_SxCR_PL_0
| DMA_SxCR_MINC | DMA_SxCR_DIR_0 ;
DMA2_Stream3->PAR = (uint32_t) &SPI1->DR ;
DMA2->LIFCR = DMA_LIFCR_CTCIF3 | DMA_LIFCR_CHTIF3 | DMA_LIFCR_CTEIF3 | DMA_LIFCR_CDMEIF3 | DMA_LIFCR_CFEIF3 ; // Write ones to clear bits
SPI1->CR2 |= SPI_CR2_TXDMAEN ;
DMA2_Stream3->CR |= DMA_SxCR_EN ; // Enable DMA
if ( tx )
{
DMA2_Stream3->CR |= DMA_SxCR_TCIE ;
}
else
{
DMA2_Stream0->CR |= DMA_SxCR_TCIE ;
}
// Wait for things to get started, avoids early interrupt
// for ( count = 0 ; count < 1000 ; count += 1 )
// {
// if ( ( spiptr->SPI_SR & SPI_SR_TXEMPTY ) == 0 )
// {
// break ;
// }
// }
#ifdef APP
if ( count == 0 )
{
Spi_complete = 1 ; // No need to wait for DMA
}
#endif
// For bootloader, wait for completion
count = 0 ;
while( Spi_complete == 0 )
{
if ( ++count > 100000 )
{
break ;
}
}
DMA2_Stream3->CR &= ~DMA_SxCR_EN ; // Disable DMA
DMA2_Stream0->CR &= ~DMA_SxCR_EN ; // Disable DMA
DMA2_Stream0->CR &= ~DMA_SxCR_TCIE ; // Stop interrupt
DMA2_Stream3->CR &= ~DMA_SxCR_TCIE ; // Stop interrupt
SPI1->CR2 &= ~SPI_CR2_TXDMAEN & ~SPI_CR2_RXDMAEN ;
GPIOA->BSRRL = GPIO_Pin_SPI_EE_CS ; // output disable
if ( count > 100000 )
{
return 1 ;
}
return 0 ;
}
extern "C" void DMA2_Stream0_IRQHandler()
{
DMA2_Stream3->CR &= ~DMA_SxCR_EN ; // Disable DMA
DMA2_Stream0->CR &= ~DMA_SxCR_EN ; // Disable DMA
DMA2_Stream0->CR &= ~DMA_SxCR_TCIE ; // Stop interrupt
DMA2_Stream3->CR &= ~DMA_SxCR_TCIE ; // Stop interrupt
SPI1->CR2 &= ~SPI_CR2_TXDMAEN & ~SPI_CR2_RXDMAEN ;
Spi_complete = 1 ;
GPIOA->BSRRL = GPIO_Pin_SPI_EE_CS ; // output disable
}
extern "C" void DMA2_Stream3_IRQHandler()
{
if ( DMA2_Stream3->NDTR )
{
DMA2->LIFCR = DMA_LIFCR_CTCIF3 | DMA_LIFCR_CFEIF3 ; // Write ones to clear bits
DMA2_Stream3->CR |= DMA_SxCR_EN ; // Enable DMA
return ;
}
// Wait for TXE=1
uint32_t i ;
i = 0 ;
while ( ( SPI1->SR & SPI_SR_TXE ) == 0 )
{
if ( ++i > 10000 )
{
break ; // Software timeout
}
}
// Then wait for BSY == 0
i = 0 ;
while ( SPI1->SR & SPI_SR_BSY )
{
if ( ++i > 10000 )
{
break ; // Software timeout
}
}
DMA2_Stream3->CR &= ~DMA_SxCR_EN ; // Disable DMA
DMA2_Stream3->CR &= ~DMA_SxCR_TCIE ; // Stop interrupt
SPI1->CR2 &= ~SPI_CR2_TXDMAEN & ~SPI_CR2_RXDMAEN ;
Spi_complete = 1 ;
GPIOA->BSRRL = GPIO_Pin_SPI_EE_CS ; // output disable
}
#endif // PCB9XT
// Backlight driver
// Reset/sync, >50uS low
// 0 bit High - 0.5uS Low - 2.0uS
// 1 bit High - 1.2uS Low - 1.3uS
// All +/-150nS
// Timer 4, channel 4, PortB bit 9
// Also needs Timer 4 channel 1 to cause DMA transfer
// Timer 4 counts up to 2.5uS then resets, channel 4 outputs signal
// Channel 1 requests DMA to channel 4 at 2uS
// At end of DMA, need to work out when to stop timer.
// Maybe set channel 4 compare to past 2.5uS
// DMA1, stream 0, channel 2, triggered by TIM4 CH1
// Testing on a X9D plus, on Ext PPM out PA7
// TIM2, ch2 and TIM2 Ch4 for DMA on CH3, Stream1
#ifdef PCB9XT
uint32_t BlLastLevel ;
uint16_t BlData[27] ;
uint8_t BlColours[3] ;
uint8_t BlChanged ;
uint8_t BlCount ;
uint8_t BlSending ;
void backlightSend() ;
// The value is 24 bits, 8 red, 8 green, 8 blue right justified
void backlightSet( uint32_t value )
{
uint16_t *blptr = BlData ;
uint32_t i ;
value <<= 8 ;
for ( i = 0 ; i < 24 ; i += 1 )
{
// *blptr++ = ( value & 0x80000000 ) ? 12 : 5 ;
*blptr++ = ( value & 0x80000000 ) ? 6 : 3 ;
value <<= 1 ;
}
*blptr++ = 40 ;
*blptr++ = 40 ;
*blptr = 40 ;
}
// Level is 0 to 100%
// colour is 0 red, 1 green, 2 blue
void BlSetColour( uint32_t level, uint32_t colour )
{
if ( colour > 3 )
{
return ;
}
level *= 255 ;
level /= 100 ;
if ( level > 255 )
{
level = 255 ;