-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBurgess2008.m
325 lines (293 loc) · 12.1 KB
/
Burgess2008.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
% Burgess 2008's oscillatory interference models
% eric zilli - 20110909 - v1.0
%
% Burgess 2008 described a wide chunk of theory relating to oscillatory
% interference grid cell models, both reviewing the previous work on
% these models and pointing out many simple variations on the basic model.
%
% The variations include:
% * Additive vs. multiplicative interactions of the active
% oscillators/VCOs
% * Sinusoidal or "punctate" (spike-like) oscillator output
% * Combining oscillators with or without leaky integration
% * Using baseline modulation or not (showing baseline modulation is
% necessary, at least when the oscillations are summed rather than
% multiplied, cf. Hasselmo2008.m)
% * Directional or nondirectional VCOs (whether VCOs output when
% preferred direction is more than 90 degrees from current heading)
% and we provide options to simulate each of these variations.
%
% Importantly: the grid cell threshold depends on the exact combination of
% options used, and while I started tryin to pre-program them all, there
% are just too many! It is very easy to find the threshold needed for
% any particular case though:
% * First, set the simulation duration to 10 seconds or so and run it.
% * Then do figure; plot(fhist) if it isn't already plotted and select
% an appropriate threshold value a bit below the highest peaks sin
% that plot but well above the lowest peaks.
%
% The manuscript suggests one other variation where the frequency
% of the baseline oscillation is the average of the frequencies
% of the active VCOs over all preferred directions. It is not clear though
% how one oscillator could take the average of the frequencies of a number
% of other oscillators and use that as its own frequency.
%
% The manuscript includes a precession model using 6 directional VCOs
% (see others in BurgessEtAl2007_precession.m and Hasselmo2008.m). The fix
% isn't so plausible, though. The directional fix used here blocks the
% output from a VCO onto a grid cell if the animal's heading is not within
% 90 degrees of the VCO's preferred direction, but the VCO still integrates
% velocity even when its output is blocked. In theory this could be
% implemented, e.g.
% A. as a cell that has nonlinear limit cycle subthreshold oscillations
% that transition into spiking at a frequency equal to the baseline
% frequency, but it seems unlikely that such an oscillator could
% have its frequency correctly controlled in the post-spike period,
% so it may not work.
% B. the output from this cell could pass through an intermediate cell
% that is inhibited by the opposite direction head direction input,
% but adding in extra ad hoc circuiry to produce phase precession
% is not particularly compelling
%
% This manuscript also fixes a problem with the Burgess et al. 2007 model
% where the product over the pairs of oscillators was being
% thresholded as a whole, rather than its individual components
% being thresholded as is done here. Though really it is only a problem in
% as much as it lets two negative oscillations multiply together into a
% positive value, which does not seem biologically plausible.
%
% Finally, this manuscript presents the model's equations in a form
% suitable for arbitrary input trajectories (though Giocomo et al. 2007
% was probably historically the earliest paper to do so).
%
% Note: This code is not necessarily optimized for speed, but is meant as
% a transparent implementation of the model as described in the manuscript.
%
% This code is released into the public domain. Not for use in skynet.
% if >0, plots the sheet of activity during the simulation on every livePlot'th step
livePlot = 200;
% are the oscillators combined with a sum or product?
oscillatorInteraction = 'sum'; % 'sum' or 'product'
% are the active VCOs or baseline sinusoidal or spike/delta-shaped?
VCOOutput = 'sine'; % 'sine' or 'spike'
baselineOutput = 'sine'; % 'sine' or 'spike'
% does the grid cell reflect only its immediate inputs or does it integrate
% them over time? integration makes more sense with
% oscillatorInteraction = 'sum' but if it is 'prod', we'll multiply the
% oscillations first and let the result be leakily-integrated. NB that
% though Burgess states that leaky integration is a reasonable assumption
% for entorhinal neurons, it is specifically untrue for stellate cells,
% which are famously resonant and so have a more complex response than
% simple integration.
integrateGridInputs = 0; % if =1, grid cell is a leaky integrator; if =0, grid cell only responds to immediate inputs
baselineModulation = 1; % if =0, no baseline oscillation is used; if =1, a baseline is used
directionalVCOs = 0; % if =0, VCOs output to grid cell for any heading; if =1, VCOs only output if heading is within 90 degrees of their preferred direction
nVCOs = 3;
% Threshold to determine when the grid cell has spiked
spikeThreshold = 3.5;
% if =0, just give constant velocity. if =1, load trajectory from disk
useRealTrajectory = 1;
constantVelocity = 1*[.5; 0*0.5]; % m/s
%% Simulation parameters
dt = .02; % time step, s
simdur = 200; % total simulation time, s
tind = 1; % time step number for indexing
t = 0; % simulation time variable, s
x = 0; % position, m
y = 0; % position, m
%% Model parameters
ncells = 1;
% Baseline maintains a fixed frequency
baseFreq = 6; % Hz
% Directional preference of each VCO (this also sets the number of VCOs)
dirPreferences = (0:nVCOs-1)*pi/3;
% Scaling factor relating speed to oscillator frequencies
% NB paper uses 0.05*2pi rad/cm. But we do the conversion to rad later,
% leaving 0.05 Hz/cm = 5 Hz/m which produces very tight field spacing. For
% cosmetic purposes for the trajectory we use here, we'll use beta = 2.
beta = 2; % Hz/(m/s)
T = 0.010; % s, time constant for integration of oscillations if used
C = 1/0.5; % normalization coefficient. the integral works out to be pi*(2n-3)!!/(2^(n-1)*(n-1)!) by my reckoning
if integrateGridInputs && dt>(0.05*T)
warning('Your time step dt should be much smaller than the time constant T!')
dt = 0.05*T;
fprintf('Using dt = %g, but frankly it should be smaller!\n',dt)
end
%% History variables
speed = zeros(1,ceil(simdur/dt));
curDir = zeros(1,ceil(simdur/dt));
vhist = zeros(1,ceil(simdur/dt));
fhist = zeros(1,ceil(simdur/dt));
f = 0;
%% Firing field plot variables
nSpatialBins = 60;
minx = -0.90; maxx = 0.90; % m
miny = -0.90; maxy = 0.90; % m
occupancy = zeros(nSpatialBins);
spikes = zeros(nSpatialBins);
spikeTimes = [];
spikeCoords = [];
spikePhases = [];
%% Initial conditions
% Oscillators will start at phase 0:
VCOPhases = zeros(1,length(dirPreferences)); % rad
basePhase = 0; % rad
%% Make optional figure of sheet of activity
if livePlot
h = figure('color','w','name','Activity of one cell');
if useRealTrajectory
set(h,'position',[520 378 1044 420])
end
drawnow
end
%% Possibly load trajectory from disk
if useRealTrajectory
load data/HaftingTraj_centimeters_seconds.mat;
% interpolate down to simulation time step
pos = [interp1(pos(3,:),pos(1,:),0:dt:pos(3,end));
interp1(pos(3,:),pos(2,:),0:dt:pos(3,end));
interp1(pos(3,:),pos(3,:),0:dt:pos(3,end))];
pos(1:2,:) = pos(1:2,:)/100; % cm to m
vels = [diff(pos(1,:)); diff(pos(2,:))]/dt; % m/s
x = pos(1,1); % m
y = pos(2,1); % m
end
%% !! Main simulation loop
fprintf('Simulation starting. Press ctrl+c to end...\n')
while t<simdur
tind = tind+1;
t = dt*tind;
% Velocity input
if ~useRealTrajectory
v = constantVelocity; % m/s
else
v = vels(:,tind); % m/s
end
curDir(tind) = atan2(v(2),v(1)); % rad
speed(tind) = sqrt(v(1)^2+v(2)^2); % m/s
x(tind) = x(tind-1)+v(1)*dt; % m
y(tind) = y(tind-1)+v(2)*dt; % m
% VCO frequencies are pushed up or down from the baseline frequency
% depending on the speed and head direction, with a scaling factor beta
% that sets the spacing between the spatial grid fields.
VCOFreqs = baseFreq + beta*speed(tind)*cos(curDir(tind)-dirPreferences); % Hz
% Advance oscillator phases
% Radial frequency (2pi times frequency in Hz) is the time derivative of phase.
VCOPhases = VCOPhases + dt*2*pi*VCOFreqs; % rad
basePhase = basePhase + dt*2*pi*baseFreq; % rad
% Compute active oscillation values from current phase
if strcmp(VCOOutput,'sine')
VCOs = cos(VCOPhases);
elseif strcmp(VCOOutput,'spike')
VCOs = (1/2+cos(VCOPhases)/2).^50;
end
if directionalVCOs
% "Directional" VCOs do not output unless they
% are within 90 degress of the VCO's preferred direction
VCOs = VCOs.*(cos(curDir(tind)-dirPreferences)>0);
end
% Compute baseline oscillation from current phase
if strcmp(baselineOutput,'sine')
baseline = baselineModulation*cos(basePhase);
elseif strcmp(baselineOutput,'spike')
baseline = baselineModulation*(1/2+cos(VCOPhases)/2).^50;
end
% Sum each dendritic oscillation separately with the baseline oscillation
VCOsPlusBaseline = VCOs + baseline;
% Threshold individual oscillator pairs
VCOsPlusBaseline = VCOsPlusBaseline.*(VCOsPlusBaseline>0);
% Final activity is the sum or product of the thresholded oscillations.
if strcmp(oscillatorInteraction,'sum')
act = sum(VCOsPlusBaseline);
elseif strcmp(oscillatorInteraction,'product')
act = prod(VCOsPlusBaseline);
end
if integrateGridInputs
% final output f is a leaky integration of the combined oscillations
f = f + dt*(-f/T + act*C);
else
% final output f is simply the current value of the combined oscillations
f = act;
end
% Save for later
fhist(tind) = f;
% Save firing field information
if f>spikeThreshold
spikeTimes = [spikeTimes; t];
spikeCoords = [spikeCoords; x(tind) y(tind)];
spikePhases = [spikePhases; basePhase];
end
if useRealTrajectory
xindex = round((x(tind)-minx)/(maxx-minx)*nSpatialBins)+1;
yindex = round((y(tind)-miny)/(maxy-miny)*nSpatialBins)+1;
occupancy(yindex,xindex) = occupancy(yindex,xindex) + dt;
spikes(yindex,xindex) = spikes(yindex,xindex) + double(f>spikeThreshold);
end
if livePlot>0 && (livePlot==1 || mod(tind,livePlot)==1)
if ~useRealTrajectory
figure(h);
subplot(121);
plot(fhist(1:tind));
title('Activity');
xlabel('Time (s)')
axis square
set(gca,'ydir','normal')
title(sprintf('t = %.1f s',t))
subplot(122);
plot(x(1:tind),y(1:tind))
hold on;
if ~isempty(spikeCoords)
cmap = jet;
cmap = [cmap((end/2+1):end,:); cmap(1:end/2,:)];
phaseInds = mod(spikePhases,2*pi)*(length(cmap)-1)/2/pi;
pointColors = cmap(ceil(phaseInds)+1,:);
scatter3(spikeCoords(:,1), ...
spikeCoords(:,2), ...
zeros(size(spikeCoords(:,1))), ...
30*ones(size(spikeCoords(:,1))), ...
pointColors, ...
'o','filled');
end
axis square
title({'Trajectory (blue) and',...
'spikes (colored by theta phase',...
'blues before baseline peak, reds after)'})
drawnow
else
figure(h);
subplot(131);
plot((0:tind-1)*dt,fhist(1:tind));
hold on;
plot([0 tind-1]*dt,[spikeThreshold spikeThreshold],'r')
title('Activity (blue) and threshold (red)');
xlabel('Time (s)')
axis square
set(gca,'ydir','normal')
subplot(132);
imagesc(spikes./occupancy);
axis square
set(gca,'ydir','normal')
title({'Rate map',sprintf('t = %.1f s',t)})
subplot(133);
plot(x(1:tind),y(1:tind))
hold on;
if ~isempty(spikeCoords)
cmap = jet;
cmap = [cmap((end/2+1):end,:); cmap(1:end/2,:)];
phaseInds = mod(spikePhases,2*pi)*(length(cmap)-1)/2/pi;
pointColors = cmap(ceil(phaseInds)+1,:);
scatter3(spikeCoords(:,1), ...
spikeCoords(:,2), ...
zeros(size(spikeCoords(:,1))), ...
30*ones(size(spikeCoords(:,1))), ...
pointColors, ...
'o','filled');
end
axis square
title({'Trajectory (blue) and',...
'spikes (colored by theta phase',...
'blues before baseline peak, reds after)'})
drawnow
end
end
end