-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBurgess2008_bat.m
312 lines (276 loc) · 10.2 KB
/
Burgess2008_bat.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
% Burgess 2008's oscillatory interference models
% eric zilli - 20111106 - v1.01
%
% This is the bat implementation of Burgess 2008, accounting for
% Yartsev et al. 2011's report that grid cells in bats that lack theta
% activity in the LFP and in the ISIs/spiking autocorrelation.
%
% This bat-time we will take the simplest approach and simply set the
% baseline frequency to zero. In this case the phases of the active
% oscillators are themselves the displacement along their preferred
% directions, rather than those displacements being represented in the
% phase difference between the active and baseline oscillators (like the
% Blair et al. 2008 model, though perhaps one could imagine other ways
% to implement this).
%
% See Burgess2008.m for more information about this model.
%
% This code is released into the public domain. Not for use in skynet.
function [dt spikes occupancy spikeTimes] = Burgess2008_bat(varargin)
batMode = 1;
if ~isempty(varargin)
batMode = varargin{1};
end
if batMode
baseFreq = 0; % Hz
else
baseFreq = 5; % Hz
end
% second parameter says whether or not to plot figures:
showFigs = 1;
if length(varargin)>1
showFigs = varargin{2};
end
% third parameter is baseline frequency override
if length(varargin)>2
baseFreq = varargin{3};
end
% are the oscillators combined with a sum or product?
oscillatorInteraction = 'sum'; % 'sum' or 'product'
% are the active VCOs or baseline sinusoidal or spike/delta-shaped?
VCOOutput = 'sine'; % 'sine' or 'spike'
baselineOutput = 'sine'; % 'sine' or 'spike'
% does the grid cell reflect only its immediate inputs or does it integrate
% them over time? integration makes more sense with oscillatorInteraction = 'sum'
% but if it is 'prod', we'll multiply the oscillations first and let the result
% be leakily-integrated. NB that though Burgess states that leaky
% integration is a reasonable assumption for entorhinal neurons, it is
% specifically untrue for stellate cells, which are famously resonant
% and so have a more complex response than simple integration.
integrateGridInputs = 0; % if =1, grid cell is a leaky integrator; if =0, grid cell only responds to immediate inputs
baselineModulation = 1; % if =0, no baseline oscillation is used; if =1, a baseline is used
directionalVCOs = 0; % if =0, VCOs output to grid cell for any heading; if =1, VCOs only output if heading is within 90 degrees of their preferred direction
nVCOs = 3;
% Threshold to determine when the grid cell has spiked
spikeThreshold = 3.5;
% if >0, plots the sheet of activity during the simulation on every livePlot'th step
livePlot = 0; 20;
if showFigs
livePlot = 0;
end
% if =0, just give constant velocity. if =1, load trajectory from disk
useRealTrajectory = 1;
constantVelocity = 1*[.5; 0*0.5]; % m/s
%% Simulation parameters
dt = .02; % time step, s
simdur = 200; % total simulation time, s
tind = 1; % time step number for indexing
t = 0; % simulation time variable, s
x = 0; % position, m
y = 0; % position, m
%% Model parameters
ncells = 1;
% Directional preference of each VCO (this also sets the number of VCOs)
dirPreferences = (0:nVCOs-1)*pi/3;
% Scaling factor relating speed to oscillator frequencies
% NB paper uses 0.05*2pi rad/cm. But we do the conversion to rad later,
% leaving 0.05 Hz/cm = 5 Hz/m which produces very tight field spacing. For cosmetic
% purposes for the trajectory we use here, we'll use beta = 2.
beta = 2; % Hz/(m/s)
T = 0.010; % s, time constant for integration of oscillations if used
C = 1/0.5; % normalization coefficient. the integral works out to be pi*(2n-3)!!/(2^(n-1)*(n-1)!) by my reckoning
if integrateGridInputs && dt>(0.05*T)
warning('Your time step dt should be much smaller than the time constant T!')
dt = 0.05*T;
fprintf('Using dt = %g, but frankly it should be smaller!\n',dt)
end
%% History variables
speed = zeros(1,ceil(simdur/dt));
curDir = zeros(1,ceil(simdur/dt));
vhist = zeros(1,ceil(simdur/dt));
fhist = zeros(1,ceil(simdur/dt));
f = 0;
%% Firing field plot variables
nSpatialBins = 60;
minx = -1; maxx = 1; % m
miny = -1; maxy = 1; % m
% minx = -0.90; maxx = 0.90; % m
% miny = -0.90; maxy = 0.90; % m
occupancy = zeros(nSpatialBins);
spikes = zeros(nSpatialBins);
spikeTimes = zeros(1,1000);
spikeCoords = zeros(1000,2);
spikePhases = zeros(1,1000);
spikeind = 1;
%% Initial conditions
% Oscillators will start at phase 0:
VCOPhases = zeros(1,length(dirPreferences)); % rad
basePhase = 0; % rad
%% Make optional figure of sheet of activity
if livePlot
h = figure('color','w','name','Activity of one cell');
if useRealTrajectory
set(h,'position',[520 378 1044 420])
end
drawnow
end
%% Possibly load trajectory from disk
if useRealTrajectory
load data/HaftingTraj_centimeters_seconds.mat;
% interpolate down to simulation time step
pos = [interp1(pos(3,:),pos(1,:),0:dt:pos(3,end));
interp1(pos(3,:),pos(2,:),0:dt:pos(3,end));
interp1(pos(3,:),pos(3,:),0:dt:pos(3,end))];
pos(1:2,:) = pos(1:2,:)/100; % cm to m
vels = [diff(pos(1,:)); diff(pos(2,:))]/dt; % m/s
x = pos(1,1); % m
y = pos(2,1); % m
end
%% !! Main simulation loop
fprintf('Simulation starting. Press ctrl+c to end...\n')
while t<simdur
tind = tind+1;
t = dt*tind;
% Velocity input
if ~useRealTrajectory
v = constantVelocity; % m/s
else
v = vels(:,tind); % m/s
end
curDir(tind) = atan2(v(2),v(1)); % rad
speed(tind) = sqrt(v(1)^2+v(2)^2); % m/s
x(tind) = x(tind-1)+v(1)*dt; % m
y(tind) = y(tind-1)+v(2)*dt; % m
% VCO frequencies are pushed up or down from the baseline frequency
% depending on the speed and head direction, with a scaling factor beta
% that sets the spacing between the spatial grid fields.
VCOFreqs = baseFreq + beta*speed(tind)*cos(curDir(tind)-dirPreferences); % Hz
% Advance oscillator phases
% Radial frequency (2pi times frequency in Hz) is the time derivative of phase.
VCOPhases = VCOPhases + dt*2*pi*VCOFreqs; % rad
basePhase = basePhase + dt*2*pi*baseFreq; % rad
% Sum each dendritic oscillation separately with the baseline oscillation
if strcmp(VCOOutput,'sine')
VCOs = cos(VCOPhases);
elseif strcmp(VCOOutput,'spike')
VCOs = (1/2+cos(VCOPhases)/2).^50;
end
if directionalVCOs
% Directional VCOs do not output unless they
% are within 90 degress of the VCO's preferred direction
VCOs = VCOs.*(cos(curDir(tind)-dirPreferences)>0);
end
if strcmp(baselineOutput,'sine')
baseline = baselineModulation*cos(basePhase);
elseif strcmp(baselineOutput,'spike')
baseline = baselineModulation*(1/2+cos(VCOPhases)/2).^50;
end
VCOsPlusBaseline = VCOs + baseline;
% Threshold individual oscillator pairs
VCOsPlusBaseline = VCOsPlusBaseline.*(VCOsPlusBaseline>0);
% Final activity is the sum or product of the thresholded oscillations.
if strcmp(oscillatorInteraction,'sum')
act = sum(VCOsPlusBaseline);
elseif strcmp(oscillatorInteraction,'product')
act = prod(VCOsPlusBaseline);
end
if integrateGridInputs
% final output f is a leaky integration of the combined oscillations
f = f + dt*(-f/T + act*C);
else
% final output f is simply the current value of the combined oscillations
f = act;
end
% Save for later
fhist(tind) = f;
% Save firing field information
if f>spikeThreshold
if mod(spikeind,1000)==0
% allocate room for next 1000 spikes
spikeTimes(spikeind+1000) = 0;
spikeCoords(spikeind+1000,:) = [0 0];
spikePhases(spikeind+1000) = 0;
end
spikeTimes(spikeind) = t;
spikeCoords(spikeind,:) = [x(tind) y(tind)];
spikePhases(spikeind) = basePhase;
spikeind = spikeind+1;
end
if useRealTrajectory
xindex = round((x(tind)-minx)/(maxx-minx)*nSpatialBins)+1;
yindex = round((y(tind)-miny)/(maxy-miny)*nSpatialBins)+1;
occupancy(yindex,xindex) = occupancy(yindex,xindex) + dt;
spikes(yindex,xindex) = spikes(yindex,xindex) + double(f>spikeThreshold);
end
if livePlot>0 && (livePlot==1 || mod(tind,livePlot)==1)
if ~useRealTrajectory
figure(h);
subplot(121);
plot(fhist(1:tind));
title('Activity');
xlabel('Time (s)')
axis square
set(gca,'ydir','normal')
title(sprintf('t = %.1f s',t))
subplot(122);
plot(x(1:tind),y(1:tind))
hold on;
if ~isempty(spikeCoords)
cmap = jet;
cmap = [cmap((end/2+1):end,:); cmap(1:end/2,:)];
phaseInds = mod(spikePhases(1:spikeind-1),2*pi)*(length(cmap)-1)/2/pi;
pointColors = cmap(ceil(phaseInds)+1,:);
scatter3(spikeCoords(1:spikeind-1,1), ...
spikeCoords(1:spikeind-1,2), ...
zeros(size(spikeCoords(1:spikeind-1,1))), ...
30*ones(size(spikeCoords(1:spikeind-1,1))), ...
pointColors, 'o','filled');
end
axis square
title({'Trajectory (blue) and',...
'spikes (colored by theta phase',...
'blues before baseline peak, reds after)'})
drawnow
else
figure(h);
subplot(131);
plot((0:tind-1)*dt,fhist(1:tind));
hold on;
plot([0 tind-1]*dt,[spikeThreshold spikeThreshold],'r')
title('Activity (blue) and threshold (red)');
xlabel('Time (s)')
axis square
set(gca,'ydir','normal')
subplot(132);
imagesc(spikes./occupancy);
axis square
set(gca,'ydir','normal')
title({'Rate map',sprintf('t = %.1f s',t)})
subplot(133);
plot(x(1:tind),y(1:tind))
hold on;
if ~isempty(spikeCoords)
cmap = jet;
cmap = [cmap((end/2+1):end,:); cmap(1:end/2,:)];
phaseInds = mod(spikePhases(1:spikeind-1),2*pi)*(length(cmap)-1)/2/pi;
pointColors = cmap(ceil(phaseInds)+1,:);
scatter3(spikeCoords(1:spikeind-1,1), ...
spikeCoords(1:spikeind-1,2), ...
zeros(size(spikeCoords(1:spikeind-1,1))), ...
30*ones(size(spikeCoords(1:spikeind-1,1))), ...
pointColors, 'o','filled');
end
axis square
title({'Trajectory (blue) and',...
'spikes (colored by theta phase',...
'blues before baseline peak, reds after)'})
drawnow
end
end
end
spikeTimes = spikeTimes(1:spikeind-1);
spikePhases = spikePhases(1:spikeind-1);
spikeCoords = spikeCoords(1:spikeind-1,:);
if showFigs
figure; hist(diff(spikeTimes(1:spikeind-1)),500); title('Grid cell ISI histogram')
end