-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBurgessEtAl2007.m
260 lines (235 loc) · 9.23 KB
/
BurgessEtAl2007.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
% Burgess, Barry, O'Keefe 2007's abstract oscillatory interference model
% eric zilli - 20110824 - v1.01
%
% Burgess et al. 2007's original manuscript describes a number of variations
% on the model, but for the sake of simplicity here we will simulate
% a very basic arrangement of a single cell with a variable number of
% dendritic oscillators and the multiplicative interaction rule used
% in equation 5.
%
% This model is extremely abstract and simply supposes the existence of
% oscillators that are each implemented as a phase value that is increased
% or advanced on each time step in proportion to the frequency of the
% oscillator (by definition the [angular] frequency of an oscillator is the
% rate of change of its phase).
%
% These oscillators were originally interpreted as stable voltage
% oscillations in the dendrites of entorhinal stellate cells. This
% particular arrangement is not biologically plausible for at least two
% reasons:
% * Stable (limit cycle) voltage oscillations within a cell will
% synchronize (a general property of coupled-oscillators) which
% will break down the model's performance (see Remme et al. 2009, 2010).
% * The oscillations actually observed in stellate cells are not stable
% limit cycle oscillations, but are either bandpass filtered noise
% or stochastic current fluctuations (Dodson, Pastoll, Nolan 2011),
% and, in either case, these oscillations are not nearly regular
% enough for use in the model (Zilli et al. 2009).
%
% Even extracellular theta (often supposed to play the role of the
% baseline oscillation in the model and treated as a sinusoidal
% input to the soma) is too irregular to play a role as an
% oscillator (Zilli et al. 2009).
%
% For these reasons, oscillatory interference models that take place
% entirely within single cells have been abandoned: the oscillations
% cannot be subthreshold voltage oscillations and each oscillator must
% be in a separate cell unconnected to the others so that they do not
% synchronize.
%
% Nevertheless, the focus of the manuscript is not on this specific
% instantiation but rather as an illustration of a general principle by
% which directional speed signals can modulate oscillator frequencies in
% such a way that the oscillators can combine to form a hexagonal
% interference pattern.
%
% NB. As written, equation 5 in the paper only applies to constant-velocity
% trajectories. To handle general trajectories, we rewrite the model in the
% form of phase equations.
%
% Note: This code is not necessarily optimized for speed, but is meant as
% a transparent implementation of the model as described in the manuscript.
%
% This code is released into the public domain. Not for use in skynet.
% if >0, plots the sheet of activity during the simulation on every livePlot'th step
livePlot = 200;
% if =0, just give constant velocity. if =1, load trajectory from disk
useRealTrajectory = 1;
constantVelocity = 1*[.5; 0*0.5]; % m/s
%% Simulation parameters
dt = .02; % time step, s
simdur = 200; % total simulation time, s
tind = 1; % time step number for indexing
t = 0; % simulation time variable, s
x = 0; % position, m
y = 0; % position, m
%% Model parameters
ncells = 1;
% Basline maintains a fixed frequency
baseFreq = 6; % Hz
% Directional preference of each dendrite (this also sets the number of dendrites)
dirPreferences = [0 2*pi/3 4*pi/3];
% Scaling factor relating speed to oscillator frequencies
% NB paper uses 0.05*2pi rad/cm [=(rad/s)/(cm/s)]. But we do the conversion to rad later,
% leaving 0.05 Hz/(cm/s) = 5 Hz/(m/s) which produces very tight field spacing. For cosmetic
% purposes for the trajectory we use here, we'll use beta = 2.
beta = 2; % Hz/(m/s)
spikeThreshold = 1.8;
%% History variables
speed = zeros(1,ceil(simdur/dt));
curDir = zeros(1,ceil(simdur/dt));
vhist = zeros(1,ceil(simdur/dt));
fhist = zeros(1,ceil(simdur/dt));
%% Firing field plot variables
nSpatialBins = 60;
minx = -0.90; maxx = 0.90; % m
miny = -0.90; maxy = 0.90; % m
occupancy = zeros(nSpatialBins);
spikes = zeros(nSpatialBins);
spikeTimes = [];
spikeCoords = [];
spikePhases = [];
%% Initial conditions
% Oscillators will start at phase 0:
dendritePhases = zeros(1,length(dirPreferences)); % rad
basePhase = 0; % rad
%% Make optional figure of sheet of activity
if livePlot
h = figure('color','w','name','Activity of one cell');
if useRealTrajectory
set(h,'position',[520 378 1044 420])
end
drawnow
end
%% Possibly load trajectory from disk
if useRealTrajectory
load data/HaftingTraj_centimeters_seconds.mat;
% interpolate down to simulation time step
pos = [interp1(pos(3,:),pos(1,:),0:dt:pos(3,end));
interp1(pos(3,:),pos(2,:),0:dt:pos(3,end));
interp1(pos(3,:),pos(3,:),0:dt:pos(3,end))];
pos(1:2,:) = pos(1:2,:)/100; % cm to m
vels = [diff(pos(1,:)); diff(pos(2,:))]/dt; % m/s
x = pos(1,1); % m
y = pos(2,1); % m
end
%% !! Main simulation loop
fprintf('Simulation starting. Press ctrl+c to end...\n')
while t<simdur
tind = tind+1;
t = dt*tind;
% Velocity input
if ~useRealTrajectory
v = constantVelocity; % m/s
else
v = vels(:,tind); % m/s
end
curDir(tind) = atan2(v(2),v(1)); % rad
speed(tind) = sqrt(v(1)^2+v(2)^2);%/dt; % m/s
x(tind) = x(tind-1)+v(1)*dt; % m
y(tind) = y(tind-1)+v(2)*dt; % m
% Dendrite frequencies are pushed up or down from the basline frequency
% depending on the speed and head direction, with a scaling factor beta
% that sets the spacing between the spatial grid fields.
% Equation 4:
dendriteFreqs = baseFreq + beta*speed(tind)*cos(curDir(tind)-dirPreferences); % Hz
% Alternative given in equation 4a:
% (decrease beta to get same spacing and if newBeta = oldBeta/baseFreq
% you recover the original model--this is more a way of relating changes
% in baseline frequency to changes in spacing a la Giocomo et al. 2007)
% dendriteFreqs = baseFreq*(1 + beta*speed(tind)*cos(curDir(tind)-dirPreferences)); % Hz
% Advance oscillator phases
% Radial frequency (2pi times frequency in Hz) is the time derivative of phase.
dendritePhases = dendritePhases + dt*2*pi*dendriteFreqs; % rad
basePhase = basePhase + dt*2*pi*baseFreq; % rad
% Sum each dendritic oscillation separately with the baseline oscillation
dendritePlusBaseline = cos(dendritePhases) + cos(basePhase);
% Final activity is the product of the oscillations.
% Note this rule has some odd features such as positive
% activity given an even number of negative oscillator sums and
% the baseline is included separately in each term in the product.
f = prod(dendritePlusBaseline);
% threshold f
f = f.*(f>0);
% Save for later
fhist(tind) = f;
% Save firing field information
if f>spikeThreshold
spikeTimes = [spikeTimes; t];
spikeCoords = [spikeCoords; x(tind) y(tind)];
spikePhases = [spikePhases; basePhase];
end
if useRealTrajectory
xindex = round((x(tind)-minx)/(maxx-minx)*nSpatialBins)+1;
yindex = round((y(tind)-miny)/(maxy-miny)*nSpatialBins)+1;
occupancy(yindex,xindex) = occupancy(yindex,xindex) + dt;
spikes(yindex,xindex) = spikes(yindex,xindex) + double(f>spikeThreshold);
end
if livePlot>0 && (livePlot==1 || mod(tind,livePlot)==1)
if ~useRealTrajectory
figure(h);
subplot(121);
plot(fhist(1:tind));
title('Activity');
xlabel('Time (s)')
axis square
set(gca,'ydir','normal')
title(sprintf('t = %.1f s',t))
subplot(122);
plot(x(1:tind),y(1:tind))
hold on;
if ~isempty(spikeCoords)
cmap = jet;
cmap = [cmap((end/2+1):end,:); cmap(1:end/2,:)];
phaseInds = mod(spikePhases,2*pi)*(length(cmap)-1)/2/pi;
pointColors = cmap(ceil(phaseInds)+1,:);
scatter3(spikeCoords(:,1), ...
spikeCoords(:,2), ...
zeros(size(spikeCoords(:,1))), ...
30*ones(size(spikeCoords(:,1))), ...
pointColors, ...
'o','filled');
end
axis square
title({'Trajectory (blue) and',...
'spikes (colored by theta phase',...
'blues before baseline peak, reds after)'})
drawnow
else
figure(h);
subplot(131);
plot((0:tind-1)*dt,fhist(1:tind));
hold on;
plot([0 tind-1]*dt,[spikeThreshold spikeThreshold],'r')
title('Activity (blue) and threshold (red)');
xlabel('Time (s)')
axis square
set(gca,'ydir','normal')
subplot(132);
imagesc(spikes./occupancy);
axis square
set(gca,'ydir','normal')
title({'Rate map',sprintf('t = %.1f s',t)})
subplot(133);
plot(x(1:tind),y(1:tind))
hold on;
if ~isempty(spikeCoords)
cmap = jet;
cmap = [cmap((end/2+1):end,:); cmap(1:end/2,:)];
phaseInds = mod(spikePhases,2*pi)*(length(cmap)-1)/2/pi;
pointColors = cmap(ceil(phaseInds)+1,:);
scatter3(spikeCoords(:,1), ...
spikeCoords(:,2), ...
zeros(size(spikeCoords(:,1))), ...
30*ones(size(spikeCoords(:,1))), ...
pointColors, ...
'o','filled');
end
axis square
title({'Trajectory (blue) and',...
'spikes (colored by theta phase',...
'blues before baseline peak, reds after)'})
drawnow
end
end
end