-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBurgessEtAl2007_precession.m
263 lines (232 loc) · 8.6 KB
/
BurgessEtAl2007_precession.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
% Burgess, Barry, O'Keefe 2007's abstract oscillatory interference model
% eric zilli - 20110825 - v1.0
%
% This variation uses equation (6) from the manuscript which is reported
% in the paper to produce proper phase precession.
% Quoting them "This model is similar to the basic model
% above with n=6 but adds pairs of dendritic oscillators with
% opposing preferred directions before multiplying the three
% resulting interference patterns together..."
%
% Unfortunately, no equation was provided so we can only guess as to
% exactly what that means. In particular, no mention is made
% of a baseline oscillation (or to thresholding), so either:
% A. No baseline oscillation is used in this variation. This seems to
% produce phase precession but the phase wanders.
% B. The baseline oscillation is multiplied in as a fourth term (along with
% the three summed pairs of opposing oscillators). This seems to produce
% less phase wandering because the baseline masks it out, but it causes
% the cell to not fire on many passes through where fields should be.
% C. The baseline oscillation is included in each of the three sums. This
% seems to work fairly well.
%
% The variations have not been extensively tested, though, and I'm still
% not quite sure which one he intended.
%
% We also include another solution, subtracting the dendrite phases before
% taking the cosine:
% threshold(cos(phi_0)+cos(phi_1-phi_2))
% This produces correct path integration, but it is not at all clear how
% that could be carried out biologically.
%
% Burgess 2008 gave a more straightforward fix, which is to block (i.e.
% zero out) the output of the VCO when the animal's current head direction
% is more than 90 degrees from the VCO's preferred direction, but to allow
% the VCO to change its frequency regardless of the animal's heading.
%
% Note: This code is not necessarily optimized for speed, but is meant as
% a transparent implementation of the model as described in the manuscript.
%
% This code is released into the public domain. Not for use in skynet.
doSubtractPhases = 0;
% See above for the three variations
precessionVariation = 'C'; % 'A', 'B', or 'C'
% if >0, plots the sheet of activity during the simulation on every livePlot'th step
livePlot = 20;
% if =0, just give constant velocity. if =1, load trajectory from disk
useRealTrajectory = 1;
constantVelocity = 1*[.5; 0*0.5]; % m/s
%% Simulation parameters
dt = .02; % time step, s
simdur = 200; % total simulation time, s
tind = 1; % time step number for indexing
t = 0; % simulation time variable, s
x = 0; % position, m
y = 0; % position, m
%% Model parameters
ncells = 1;
% Basline maintains a fixed frequency
baseFreq = 6; % Hz
% Directional preference of each dendrite (this also sets the number of dendrites)
dirPreferences = (0:5)*pi/3;
% This will let us add/subtract dendritic values with opposite direction preferences:
if doSubtractPhases
oppositeDendrites = [1 0 0 -1 0 0;
0 1 0 0 -1 0;
0 0 1 0 0 -1];
else
oppositeDendrites = [1 0 0 1 0 0;
0 1 0 0 1 0;
0 0 1 0 0 1];
end
% Scaling factor relating speed to oscillator frequencies
% NB paper uses 0.05*2pi rad/cm. But we do the conversion to rad later,
% leaving 0.05 1/cm = 5 1/m which produces very tight field spacing. For cosmetic
% purposes for the trajectory we use here, we'll use beta = 2.
beta = 2; % Hz/(m/s)
if doSubtractPhases
spikeThreshold = 2.5;
else
spikeThreshold = 0.3; 2.5;
end
if precessionVariation=='A'
spikeThreshold = 1; 2.5;
elseif precessionVariation=='B'
spikeThreshold = 0.3;
elseif precessionVariation=='C'
spikeThreshold = 5;
else
error('No such precession option.')
end
%% History variables
speed = zeros(1,ceil(simdur/dt));
curDir = zeros(1,ceil(simdur/dt));
vhist = zeros(1,ceil(simdur/dt));
fhist = zeros(1,ceil(simdur/dt));
%% Firing field plot variables
nSpatialBins = 60;
minx = -0.90; maxx = 0.90; % m
miny = -0.90; maxy = 0.90; % m
occupancy = zeros(nSpatialBins);
spikes = zeros(nSpatialBins);
spikeTimes = [];
spikeCoords = [];
spikePhases = [];
%% Initial conditions
% Oscillators will start at phase 0:
dendritePhases = zeros(1,length(dirPreferences)); % rad
basePhase = 0; % rad
%% Make optional figure of sheet of activity
if livePlot
h = figure('color','w','name','Activity of one cell');
if useRealTrajectory
set(h,'position',[520 378 1044 420])
end
drawnow
end
%% Possibly load trajectory from disk
if useRealTrajectory
load data/HaftingTraj_centimeters_seconds.mat;
% interpolate down to simulation time step
pos = [interp1(pos(3,:),pos(1,:),0:dt:pos(3,end));
interp1(pos(3,:),pos(2,:),0:dt:pos(3,end));
interp1(pos(3,:),pos(3,:),0:dt:pos(3,end))];
pos(1:2,:) = pos(1:2,:)/100; % cm to m
vels = [diff(pos(1,:)); diff(pos(2,:))]/dt; % m/s
x = pos(1,1); % m
y = pos(2,1); % m
end
%% !! Main simulation loop
fprintf('Simulation starting. Press ctrl+c to end...\n')
while t<simdur
tind = tind+1;
t = dt*tind;
% Velocity input
if ~useRealTrajectory
v = constantVelocity; % m/s
else
v = vels(:,tind); % m/s
end
curDir(tind) = atan2(v(2),v(1)); % rad
speed(tind) = sqrt(v(1)^2+v(2)^2);%/dt; % m/s
x(tind) = x(tind-1)+v(1)*dt; % m
y(tind) = y(tind-1)+v(2)*dt; % m
% Dendrite frequencies are pushed up or down from the basline frequency
% depending on the speed and head direction, with a scaling factor beta
% that sets the spacing between the spatial grid fields.
% Equation 6:
dendriteFreqs = baseFreq + beta*speed(tind)*cos(curDir(tind)-dirPreferences).*(cos(curDir(tind)-dirPreferences)>0); % Hz
% Advance oscillator phases
% Radial frequency (2pi times frequency in Hz) is the time derivative of phase.
dendritePhases = dendritePhases + dt*2*pi*dendriteFreqs; % rad
basePhase = basePhase + dt*2*pi*baseFreq; % rad
% Sum opposite oscillations
if doSubtractPhases
% works but not clear how this could be carried out biologically
summedOpposites = cos(oppositeDendrites*dendritePhases');
else
% does not seem to work
summedOpposites = oppositeDendrites*cos(dendritePhases');
end
% Sum each dendritic oscillation separately with the baseline oscillation
if precessionVariation=='A'
dendritesAndBaseline = [summedOpposites];
elseif precessionVariation=='B'
dendritesAndBaseline = [summedOpposites; cos(basePhase)];
elseif precessionVariation=='C'
dendritesAndBaseline = summedOpposites + cos(basePhase);
else
error('No such precession option.')
end
% Rectify before product
dendritesAndBaseline = dendritesAndBaseline.*(dendritesAndBaseline>0);
% Final activity is the product of the oscillations.
f = prod(dendritesAndBaseline);
% threshold f
f = f.*(f>0);
% Save for later
fhist(tind) = f;
% Save firing field information
if f>spikeThreshold
spikeTimes = [spikeTimes; t];
spikeCoords = [spikeCoords; x(tind) y(tind)];
spikePhases = [spikePhases; basePhase];
end
if useRealTrajectory
xindex = round((x(tind)-minx)/(maxx-minx)*nSpatialBins)+1;
yindex = round((y(tind)-miny)/(maxy-miny)*nSpatialBins)+1;
occupancy(yindex,xindex) = occupancy(yindex,xindex) + dt;
spikes(yindex,xindex) = spikes(yindex,xindex) + double(f>spikeThreshold);
end
if livePlot>0 && (livePlot==1 || mod(tind,livePlot)==1)
% We plot a rate map if using the real trajectory, otherwise
% just the activity and trajectory with phase-coded spikes
figure(h);
subplot(1,2+useRealTrajectory,1);
plot((0:tind-1)*dt,fhist(1:tind));
hold on;
plot([0 tind-1]*dt,[spikeThreshold spikeThreshold],'r')
title('Activity (blue) and threshold (red)');
xlabel('Time (s)')
axis square
set(gca,'ydir','normal')
if useRealTrajectory
subplot(1,2+useRealTrajectory,2);
imagesc(spikes./occupancy);
axis square
set(gca,'ydir','normal')
title({'Rate map',sprintf('t = %.1f s',t)})
subplot(1,2+useRealTrajectory,3);
else
subplot(1,2+useRealTrajectory,2);
end
plot(x(1,1:tind),y(1,1:tind));
hold on;
if ~isempty(spikeCoords)
cmap = jet;
cmap = [cmap((end/2+1):end,:); cmap(1:end/2,:)];
phaseInds = mod(spikePhases,2*pi)*(length(cmap)-1)/2/pi;
pointColors = cmap(ceil(phaseInds)+1,:);
scatter3(spikeCoords(:,1), ...
spikeCoords(:,2), ...
zeros(size(spikeCoords(:,1))), ...
30*ones(size(spikeCoords(:,1))), ...
pointColors, 'o','filled');
end
axis square
title({'Trajectory (blue) and',...
'spikes (colored by theta phase',...
'blues before baseline peak, reds after)'})
drawnow
end
end