-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFigureReadout.m
324 lines (294 loc) · 10.9 KB
/
FigureReadout.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
% figure demonstrating read-out mechanisms in interference models
% eric zilli - 20111105 - v1.0
%
% Read-out rules that have been used:
% * thresholdlinear[(base+a1)*(base+a2)*(base+a3)] Burgess et al. 2007
% * thresholdlinear[(base+a1)+(base+a2)+(base+a3)] Burgess et al. 2007
% * (s1+s2) Blair et al. 2007
% * s1*s2 Gaussier et al. 2007
% * threshold(a1>0.5)*threshold(a2>0.5)*threshold(a3>0.5) Hasselmo 2008
% * (1D) (base+a1) Burgess 2008
% * (1D) base*a1 Blair et al. 2008, Burgess 2008
% * thresholdlinear(base+a1)*thresholdlinear(base+a2) Burgess 2008
% * base*(a1+a2+a3) Burgess 2008
% * (a1+a2+a3) Burgess 2008
% * threshold((base+a1+a2)>2) Zilli and Hasselmo 2010
% * threshold(base)*(thresholdlinear(a1)+thresholdlinear(a2)) Zilli and Hasselmo 2010
% * -base - a1 - a2 Zilli and Hasselmo 2010, Welday et al 2011
% * threshold(s1+s2+s3+...) Mhatre et al. 2010
%
% base indicates the baseline oscillation, a1-a3 active oscillations,
% s1-s3 stripe cell activities, thresholdlinear() is the function
% thresholdlinear(x) = 0 if x<=0 and thresholdlinear(x) = x if x>0
% threshold() is the Heaviside function:
% threshold(x)=0 if x<=0 and threshold(x) = 1 if x>0, except for
% Zilli and Hasselmo (2010) where threshold indicates the thresholded
% spiking activity of a single neuron.
%% Variables for plotting oscillations
plotDur = 2*1.5; % s
dt = 0.001;
tvect = dt:dt:plotDur;
baseFreq = 5; % Hz
activeFreqs = 5 + [0.5 -0.5 1];
startPhase = [0 pi pi 0];
% Oscillations:
base = cos(2*pi*baseFreq*tvect + startPhase(1));
a1 = cos(2*pi*activeFreqs(1)*tvect + startPhase(2));
a2 = cos(2*pi*activeFreqs(2)*tvect + startPhase(3));
a3 = cos(2*pi*activeFreqs(3)*tvect + startPhase(4));
%% Evaluate readout rules for sinusoids
Bu07a = heaviside((base+a1).*(base+a2).*(base+a3)).*(base+a1).*(base+a2).*(base+a3); % his eq (5)
Bu07b = heaviside((base+a1)+(base+a2)+(base+a3))+(base+a1)+(base+a2)+(base+a3); % his eq (5)
Bu08e = (a1+a2+a3); % implied in Fig 7 left
Ha08 = heaviside((a1-0.5)).*heaviside((a2-0.5)).*heaviside((a3-0.5));
Bu08a = (base+a1); % his Fig 1 a (and b)
Bu08b = (base.*a1); % his Fig 1 c (and d); he seemed to threshold it
% Bl08 = base.*a1; % blair et al. 2008 is same rule as burgess 2008b
Bu08c = heaviside((base+a1)).*(base+a1).*heaviside((base+a2)).*(base+a2); % his eq (6) r(t) with n=2
Bu08d = (0.5+0.5*base).*(a1+a2+a3); % his equation 9
Zi10a = heaviside(((base+a1+a2)-2));
Zi10b = heaviside(base-0.5).*(a1+a2);
Zi10c = - base - a1 - a2;
% Zi10c = - base - a1 - a2 + 1.5;
% Zi10b = heaviside(base).*(heaviside(a1).*a1+heaviside(a2).*a2);
% Ga07 = s1.*s2;
% Mh10 = heaviside(s1+s2+s3);
%% Pull variables and labels together to plot in a loop
signals = [base; a1; a2; a3; Bu07a; Bu07b; Bu08e; Ha08; Bu08a; Bu08b; Bu08c; Bu08d; Zi10a; Zi10c];
% signalNames = {'base', 'a1', 'a2', 'a3', 'Bu07', 'Bu08e', 'Ha08', 'Bu08a', 'Bu08b, Bl08', 'Bu08c', 'Bu08d', 'Zi10a', 'Zi10b'};
% signalNames = {'base', 'a1', 'a2', 'a3', 'Burgess et al. 2007b', 'Burgess et al. 2007a', 'Blair et al. 2007', 'Hasselmo 2008', 'Burgess 2008a', {'Blair et al. 2008, Burgess 2008b'}, 'Burgess 2008c', 'Burgess 2008d', 'Zilli et al. 2010a', 'Zilli et al. 2010b','Welday et al. 2011, Zilli et al. 2010c'};
signalNames = {'base', 'a1', 'a2', 'a3', 'Burgess et al. 2007', 'Burgess et al. 2007', 'Burgess et al. 2008', 'Hasselmo 2008', 'Burgess 2008', {'Blair et al. 2008, Burgess 2008'}, 'Burgess 2008', 'Burgess 2008', 'Zilli et al. 2010', 'Welday et al. 2011, Zilli et al. 2010'};
shortEqs = {'R[(b + a_1)(b + a_2)(b + a_3)]', ...
'R[(b + a_1)+(b + a_2)+(b + a_3)]', ...
'a_1 + a_2 + a_3', ...
'H(a_1 - 0.5)H(a_2 - 0.5)H(a_3 - 0.5)', ...
'b + a_1', ...
'ba_1', ...
'R(b + a_1)R(b + a_2)', ...
'(b+1)(a_1 + a_2 + a_3)/2', ...
'H(b + a_1 + a_2 - 2)', ...
'-b - a_1 - a_2'};
permutation = [1 2 3 4 9 10 11 7 12 6 5 8 13];
%% Optionally re-order signals before plotting
tsignals = signals;
for i=1:length(permutation)
signals(i,:) = tsignals(permutation(i),:);
end
tsignalNames = signalNames;
for i=1:length(permutation)
signalNames{i} = tsignalNames{permutation(i)};
end
tshortEqs = shortEqs;
for i=1:(length(permutation)-4)
shortEqs{i} = tshortEqs{permutation(i+4)-4};
end
%% Figure options
nrows = size(signals,1)-3;
leftMargin = 0.05;
bottomMargin = 0.06;
width = 0.89/2;
height = .75/nrows;
lefts = leftMargin + [0 0.5];
bottoms = bottomMargin + 1.04*linspace(0,1,nrows+2);
set(0,'defaultAxesFontName', 'Arial')
set(0,'defaultAxesFontSize', 8)
set(0,'defaultTextFontName', 'Arial')
% size on paper:
widthOnPaper = 18.0; % cm
heightOnPaper = 13.5; % cm
figure('units','centimeters','position',[1 1 widthOnPaper heightOnPaper],'color','w');
set(gcf, 'renderer', 'painter')
set(gcf, 'PaperUnits', 'centimeters');
set(gcf, 'PaperSize', [widthOnPaper heightOnPaper]);
set(gcf, 'PaperPositionMode', 'manual');
set(gcf, 'PaperPosition', [0 0 widthOnPaper heightOnPaper]);
%% Colors of oscillations
% % cmykish
% colors = [0.8 0.75 0.3; 0.7 0.45 0.98; 0.1 0.7 0.6];
% % blue/orange/yellow
% colors = [0.3 0.2 0.8; 0.8 0.3 0.15; 0.85 0.9 0.3];
% standard rgb
colors = [1 0 0; 0 0.5 0; 0 0 1];
% muted rgb
colors = [.9 0 0; 0 0.4 0; 0 0 0.9];
%% Optional line to separate oscillations from read-outs
% lineY = 0.925;
% annotation('line',[.05 .45],[lineY lineY],'color',[0.6 0.7 0.6])
% annotation('line',[.58 .97],[lineY lineY],'color',[0.6 0.7 0.6])
%% Plot sinusoid column
% figure('name','Read-out','color','w','position',[181 146 451 649])
for ind=4:size(signals,1)
axes('position',[lefts(1) bottoms(size(signals,1)-ind+1) width height]);
if ind==4
set(gca,'colororder',colors,'nextplot','replacechildren')
plot(tvect,signals(2:4,:)')
hold on;
plot(tvect,signals(1,:),'k');
text(-0.075*diff(get(gca,'xlim'))+min(get(gca,'xlim')),...
0.96*diff(get(gca,'ylim'))+min(get(gca,'ylim')),...
'(A)',...
'FontSize',10,...
'FontWeight','bold',...
'HorizontalAlignment','center')
else
plot(tvect,signals(ind,:),'k');
end
set(gca,'box','off')
% Clean up yticks and y limits of plots
if min(signals(ind,:))<0
set(gca,'ylim',1.1*[min(signals(ind,:)) max(signals(ind,:))])
else
set(gca,'ylim',[.91*min(signals(ind,:)) 1.1*max(signals(ind,:))])
end
if ind==7 % Bu08c
set(gca,'ytick',[0 4])
elseif ind==8 % Bu08e
set(gca,'ytick',[-3 0 3])
ylim([-3.2 3])
elseif ind==9 % Bu08d
ylim([-2.1 4.1])
set(gca,'ytick',[-2 0 2 4])
% set(gca,'ytick',[-1 1 3])
elseif ind==11 % Bu07b
set(gca,'ytick',[0 8])
elseif ind==12 % Ha08
set(gca,'ytick',[0 1])
elseif ind==13 % Zi10a
set(gca,'ytick',[0 1])
elseif ind==14 % Zi10c
set(gca,'ytick',[-3 0 3])
end
% if min(get(gca,'ylim'))==0
% ylim([-0.05 max(get(gca,'ylim'))])
% end
% Turn off most tick labels and xlabel the bottom plot "Time (s)"
if ind~=size(signals,1)
set(gca,'xticklabel',[])
else
text(0.5*diff(get(gca,'xlim'))+min(get(gca,'xlim')),...
-.63*diff(get(gca,'ylim'))+min(get(gca,'ylim')),...
'Time (s)',...
'FontSize',9,...
'HorizontalAlignment','center')
end
if ind~=4
text(2,0.9*diff(get(gca,'ylim'))+min(get(gca,'ylim')),shortEqs{ind-4},'fontsize',8,'horizontalalign','center')
end
end
%% Define EPSP oscillations
synKernel = exp(-tvect/0.060); % 10 ms decay
baseTimes = 0:1/baseFreq:max(tvect);
a1Times = 0:1/activeFreqs(1):max(tvect);
a2Times = 0:1/activeFreqs(2):max(tvect);
a3Times = 0:1/activeFreqs(3):max(tvect);
tvect = tvect+max(tvect);
base = zeros(1,length(tvect));
base(ceil(baseTimes/dt)+1) = 1;
base = conv(base,synKernel);
base = base(1:length(tvect));
a1 = zeros(1,length(tvect));
a1(ceil(a1Times/dt)+1) = 1;
a1 = conv(a1,synKernel);
a1 = a1(1:length(tvect));
a2 = zeros(1,length(tvect));
a2(ceil(a2Times/dt)+1) = 1;
a2 = conv(a2,synKernel);
a2 = a2(1:length(tvect));
a3 = zeros(1,length(tvect));
a3(ceil(a3Times/dt)+1) = 1;
a3 = conv(a3,synKernel);
a3 = a3(1:length(tvect));
%% Evaluate readout rules for EPSPs
Bu07a = heaviside((base+a1).*(base+a2).*(base+a3)).*(base+a1).*(base+a2).*(base+a3); % his eq (5)
Bu07b = heaviside((base+a1)+(base+a2)+(base+a3))+(base+a1)+(base+a2)+(base+a3); % his eq (5)
Bu08e = (a1+a2+a3); % their eq (1), though it wasn't really a model per se
Ha08 = heaviside((a1-0.5)).*heaviside((a2-0.5)).*heaviside((a3-0.5));
Bu08a = (base+a1); % his Fig 1 a (and b)
Bu08b = (base.*a1); % his Fig 1 c (and d); he seemed to threshold it
% Bl08 = base.*a1; % blair et al. 2008 is same rule as burgess 2008b
Bu08c = heaviside((base+a1)).*(base+a1).*heaviside((base+a2)).*(base+a2); % his eq (6) r(t) with n=2
Bu08d = (0.5+0.5*base).*(a1+a2+a3); % his equation 9
Zi10a = heaviside(((base+a1+a2)-2));
% Zi10b = heaviside(base-0.5).*(a1+a2);
Zi10c = - base - a1 - a2;
% Zi10c = - base - a1 - a2 + 1.5;
signals = [base; a1; a2; a3; Bu07a; Bu07b; Bu08e; Ha08; Bu08a; Bu08b; Bu08c; Bu08d; Zi10a; Zi10c];
tsignals = signals;
for i=1:length(permutation)
signals(i,:) = tsignals(permutation(i),:);
end
%% Plot EPSPs and readout
for ind=4:size(signals,1)
axes('position',[lefts(2) bottoms(size(signals,1)-ind+1) width height]);
if ind==4
set(gca,'colororder',colors,'nextplot','replacechildren')
plot(tvect,signals(2:4,:)')
hold on;
plot(tvect,signals(1,:),'k');
set(gca,'ytick',[0 0.5 1])
else
plot(tvect,signals(ind,:),'k');
end
set(gca,'box','off')
% Clean up yticks and y limits of plots
if ind>4
if min(signals(ind,:))<0
set(gca,'ylim',1.1*[min(signals(ind,:)) max(signals(ind,:))])
elseif min(signals(ind,:))<.2
set(gca,'ylim',[0 1.1*max(signals(ind,:))])
else
set(gca,'ylim',[.91*min(signals(ind,:)) 1.1*max(signals(ind,:))])
end
else
ylim([-0.01 1.05])
end
if ind==14
ylim([-3 0.75]);
end
if ind==4
set(gca,'ytick',[0 1]);
elseif ind==5
set(gca,'ytick',[0 2]);
elseif ind==6
set(gca,'ytick',[0 1]);
elseif ind==7
set(gca,'ytick',[0 4]);
elseif ind==8
set(gca,'ytick',[0 3]);
elseif ind==9
set(gca,'ytick',[0 3]);
elseif ind==10
set(gca,'ytick',[0 6]);
ylim([0 7.5])
elseif ind==11
set(gca,'ytick',[0 8]);
elseif ind==12
set(gca,'ytick',[0 1]);
elseif ind==13
set(gca,'ytick',[0 1]);
elseif ind==14
set(gca,'ytick',[-3 0]);
end
% Panel label
if ind==4
text(-0.085*diff(get(gca,'xlim'))+min(get(gca,'xlim')),...
.92*diff(get(gca,'ylim'))+min(get(gca,'ylim')),...
'(B)',...
'FontSize',10,...
'FontWeight','bold',...
'HorizontalAlignment','center');
end
% Turn off most tick labels and xlabel the bottom plot "Time (s)"
if ind~=size(signals,1)
set(gca,'xticklabel',[])
else
text(0.5*diff(get(gca,'xlim'))+min(get(gca,'xlim')),...
-0.63*diff(get(gca,'ylim'))+min(get(gca,'ylim')),...
'Time (s)',...
'FontSize',9,...
'HorizontalAlignment','center')
end
if ind>=5
text(4,0.9*diff(get(gca,'ylim'))+min(get(gca,'ylim')),signalNames{ind},'fontsize',8,'horizontalalign','center')
end
end