-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGiocomoEtAl2007.m
256 lines (232 loc) · 9.05 KB
/
GiocomoEtAl2007.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
% Giocomo, Zilli, Fransen, and Hasselmo 2007's temporal interference model
% eric zilli - 20110824 - v1.01
%
% This model was a slight variation on the model originally described in
% the Burgess, Barry, Jeffery, O'Keefe poster "A Grid & Place Cell Model
% of Path Integration Utilizing Phase Precession Versus Theta."
%
% The only change to the model itself was in the way the frequencies of the
% active oscillators are set (which changes the way grid spacing relates to
% the parameters of the model). Let s(t) and phi(t) be the animal's speed
% and direction at time t, phi the preferred direction of an oscillator,
% w_active its frequency, w_baseline the baseline frequency, and beta a
% scaling factor relating velocities to frequency changes. Originally the
% active oscillator frequency was
% w_active = w_baseline + beta*s(t)*cos(phi(t) - phi)
%
% In Giocomo et al. 2007, Mike modified it to be
% w_active = w_baseline + w_baseline*beta*s(t)*cos(phi(t) - phi)
%
% Grid field spacing in these models depends on how the frequency
% difference w_active - w_baseline is related to the animal's directional
% speed s(t)*cos(phi(t) - phi). The change to these equations therefore
% results in field spacing changing from depending on beta alone in the
% original equation to w_baseline*beta in the second equation.
%
% Notice that if we had two separate simulations, we could set beta in the
% simulation of the first equation equal to the value of w_baseline*beta in
% the second equation, and the two equations would always give the same
% result.
%
% Thus the models are identical except the field spacing in Giocomo et al.
% 2007 depends on the baseline frequency.
%
% This change was made because Lisa Giocomo's data showed a gradient of
% frequencies along the dorsoventral axis of entorhinal cortex from say 8
% Hz to 4 Hz. First, all along the DV axis, theta frequency is around 8 Hz
% so the difference between the frequencies of the cells near threshold and
% theta increases in the ventral direction. In this model, a larger
% frequency difference produces smaller field spacing, but ventral grid
% cells have larger field spacings, so the theta oscillation could not play
% the role of the baseline frequency in this model (e.g. this model will
% not precess relative to theta).
%
% The assumption then had to be that the 8 to 4 Hz gradient was the
% baseline frequency. But in the original model, the field spacing is not
% related to baseline frequency, so the model was modified to be consistent
% with this data. By making the difference in frequency depend on the
% baseline frequency, a lower baseline frequency directly caused larger
% field spacing assuming beta remained unchanged.
%
% Burgess et al. 2007 pointed out that Lisa's data might instead correspond
% to a gradient of beta values, making the baseline dependency introduced
% here unnecessary.
%
% Note: This code is not necessarily optimized for speed, but is meant as
% a transparent implementation of the model as described in the manuscript.
%
% This code is released into the public domain. Not for use in skynet.
% if >0, plots the sheet of activity during the simulation on every livePlot'th step
livePlot = 200;
% if =0, just give constant velocity. if =1, load trajectory from disk
useRealTrajectory = 1;
constantVelocity = 1*[.5; 0*0.5]; % m/s
%% Simulation parameters
dt = .02; % time step, s
simdur = 200; % total simulation time, s
tind = 1; % time step number for indexing
t = 0; % simulation time variable, s
x = 0; % position, m
y = 0; % position, m
%% Model parameters
ncells = 1;
% Basline maintains a fixed frequency
baseFreq = 6.42; % dorsal, Hz
% baseFreq = 4.23; % ventral, Hz
% Directional preference of each dendrite (this also sets the number of dendrites)
dirPreferences = [0 2*pi/3 4*pi/3];
% Scaling factor relating speed to oscillator frequencies
beta = 0.385; % Hz/(m/s)
spikeThreshold = 1.8;
%% History variables
speed = zeros(1,ceil(simdur/dt));
curDir = zeros(1,ceil(simdur/dt));
vhist = zeros(1,ceil(simdur/dt));
fhist = zeros(1,ceil(simdur/dt));
%% Firing field plot variables
nSpatialBins = 60;
minx = -0.90; maxx = 0.90; % m
miny = -0.90; maxy = 0.90; % m
occupancy = zeros(nSpatialBins);
spikes = zeros(nSpatialBins);
spikeTimes = [];
spikeCoords = [];
spikePhases = [];
%% Initial conditions
% Oscillators will start at phase 0:
dendritePhases = zeros(1,length(dirPreferences)); % rad
basePhase = 0; % rad
%% Make optional figure of sheet of activity
if livePlot
h = figure('color','w','name','Activity of one cell');
if useRealTrajectory
set(h,'position',[520 378 1044 420])
end
drawnow
end
%% Possibly load trajectory from disk
if useRealTrajectory
load data/HaftingTraj_centimeters_seconds.mat;
% interpolate down to simulation time step
pos = [interp1(pos(3,:),pos(1,:),0:dt:pos(3,end));
interp1(pos(3,:),pos(2,:),0:dt:pos(3,end));
interp1(pos(3,:),pos(3,:),0:dt:pos(3,end))];
pos(1:2,:) = pos(1:2,:)/100; % cm to m
vels = [diff(pos(1,:)); diff(pos(2,:))]/dt; % m/s
x = pos(1,1); % m
y = pos(2,1); % m
end
%% !! Main simulation loop
fprintf('Simulation starting. Press ctrl+c to end...\n')
while t<simdur
tind = tind+1;
t = dt*tind;
% Velocity input
if ~useRealTrajectory
v = constantVelocity; % m/s
else
v = vels(:,tind); % m/s
end
curDir(tind) = atan2(v(2),v(1)); % rad
speed(tind) = sqrt(v(1)^2+v(2)^2);%/dt; % m/s
x(tind) = x(tind-1)+v(1)*dt; % m
y(tind) = y(tind-1)+v(2)*dt; % m
% Dendrite frequencies are pushed up or down from the basline frequency
% depending on the speed and head direction, with a scaling factor
% baseFreq*beta that sets the spacing between the spatial grid fields.
dendriteFreqs = baseFreq + baseFreq*beta*speed(tind)*cos(curDir(tind)-dirPreferences); % Hz
% Advance oscillator phases
% Radial frequency (2pi times frequency in Hz) is the time derivative of phase.
dendritePhases = dendritePhases + dt*2*pi*dendriteFreqs; % rad
basePhase = basePhase + dt*2*pi*baseFreq; % rad
% Sum each dendritic oscillation separately with the baseline oscillation
dendritePlusBaseline = cos(dendritePhases) + cos(basePhase);
% Final activity is the product of the oscillations.
% Note this rule has some odd features such as positive
% activity given an even number of negative oscillator sums and
% the baseline is included separately in each term in the product.
f = prod(dendritePlusBaseline);
% threshold threshold f
f = f.*(f>0);
% Save for later
fhist(tind) = f;
% Save firing field information
if f>spikeThreshold
spikeTimes = [spikeTimes; t];
spikeCoords = [spikeCoords; x(tind) y(tind)];
spikePhases = [spikePhases; basePhase];
end
if useRealTrajectory
xindex = round((x(tind)-minx)/(maxx-minx)*nSpatialBins)+1;
yindex = round((y(tind)-miny)/(maxy-miny)*nSpatialBins)+1;
occupancy(yindex,xindex) = occupancy(yindex,xindex) + dt;
spikes(yindex,xindex) = spikes(yindex,xindex) + double(f>spikeThreshold);
end
if livePlot>0 && (livePlot==1 || mod(tind,livePlot)==1)
if ~useRealTrajectory
figure(h);
subplot(121);
plot(fhist(1:tind));
title('Activity');
xlabel('Time (s)')
axis square
set(gca,'ydir','normal')
title(sprintf('t = %.1f s',t))
subplot(122);
plot(x(1:tind),y(1:tind))
hold on;
if ~isempty(spikeCoords)
cmap = jet;
cmap = [cmap((end/2+1):end,:); cmap(1:end/2,:)];
phaseInds = mod(spikePhases,2*pi)*(length(cmap)-1)/2/pi;
pointColors = cmap(ceil(phaseInds)+1,:);
scatter3(spikeCoords(:,1), ...
spikeCoords(:,2), ...
zeros(size(spikeCoords(:,1))), ...
30*ones(size(spikeCoords(:,1))), ...
pointColors, ...
'o','filled');
end
axis square
title({'Trajectory (blue) and',...
'spikes (colored by theta phase',...
'blues before baseline peak, reds after)'})
drawnow
else
figure(h);
subplot(131);
plot((0:tind-1)*dt,fhist(1:tind));
hold on;
plot([0 tind-1]*dt,[spikeThreshold spikeThreshold],'r')
title('Activity (blue) and threshold (red)');
xlabel('Time (s)')
axis square
set(gca,'ydir','normal')
subplot(132);
imagesc(spikes./occupancy);
axis square
set(gca,'ydir','normal')
title({'Rate map',sprintf('t = %.1f s',t)})
subplot(133);
plot(x(1:tind),y(1:tind))
hold on;
if ~isempty(spikeCoords)
cmap = jet;
cmap = [cmap((end/2+1):end,:); cmap(1:end/2,:)];
phaseInds = mod(spikePhases,2*pi)*(length(cmap)-1)/2/pi;
pointColors = cmap(ceil(phaseInds)+1,:);
scatter3(spikeCoords(:,1), ...
spikeCoords(:,2), ...
zeros(size(spikeCoords(:,1))), ...
30*ones(size(spikeCoords(:,1))), ...
pointColors, ...
'o','filled');
end
axis square
title({'Trajectory (blue) and',...
'spikes (colored by theta phase',...
'blues before baseline peak, reds after)'})
drawnow
end
end
end