-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAIY_simulation_vclamp.py
177 lines (127 loc) · 4.68 KB
/
AIY_simulation_vclamp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# "Biophysical modeling of the whole-cell dynamics of C. elegans motor and interneurons families"
# M. Nicoletti et al. PloS ONE, 19(3): e0298105.
# https://doi.org/10.1371/journal.pone.0298105
def AIY_simulation_vc(gAIY_scaled,vstart,vstop,ns):
# voltage clamp per Minimizzazioni con canali calcio fissati e ottimizzazione sul potassio
#i valori delle conduttanze del calcio vengono dal set xpp DEFINITIVO.ode
#fissati anche i valori di irk, kcnl per fittare le code e di slo1 slo2
#libere anche le conduttanze di perdita
from neuron import h,gui
import numpy
import math
from matplotlib import pyplot
from operator import add
from neuron import h,gui
import numpy
import math
from matplotlib import pyplot
from operator import add
surf=65.89e-8 # surface in cm^2 form neuromorpho AIYL
vol=7.42e-12 # total volume
L=math.sqrt(surf/math.pi)
rsoma=L*1e4
cm_uFcm2=gAIY_scaled[8]
soma=h.Section(name="soma")
soma.L=rsoma
soma.diam=rsoma
soma.cm=cm_uFcm2
soma.Ra=100
h.psection(sec=soma)
soma.insert('egl19')
soma.insert('slo1egl19')
soma.insert('nca')
soma.insert('leak')
soma.insert('slo1iso')
soma.insert('kqt1')
soma.insert('shl1')
for seg in soma:
seg.leak.gbar = gAIY_scaled[0]
seg.slo1iso.gbar = gAIY_scaled[1]
seg.kqt1.gbar=gAIY_scaled[2]
seg.egl19.gbar=gAIY_scaled[3]
seg.slo1egl19.gbar = gAIY_scaled[4]
seg.nca.gbar = gAIY_scaled[5]
seg.shl1.gbar = gAIY_scaled[6]
seg.leak.e=gAIY_scaled[7]
seg.eca=60
seg.ek=-80
stim=h.VClamp(soma(0.5))
dir(stim)
simdur = 1700
stim.amp[0]=-60
stim.amp[2]=-60
stim.dur[0]=1100
stim.dur[1]=500
stim.dur[2]=100
ik_vec = h.Vector()
ica_vec=h.Vector()
inca_vec=h.Vector()
ileakAIY_vec=h.Vector()
t_vec = h.Vector()
ik_vec.record(soma(0.5)._ref_ik)
ica_vec.record(soma(0.5)._ref_ica)
inca_vec.record(soma(0.5)._ref_i_nca)
ileakAIY_vec.record(soma(0.5)._ref_i_leak)
t_vec.record(h._ref_t)
ref_ik=[]
ref_ica=[]
ref_t=[]
ref_inca=[]
ref_ileakAIY=[]
#ref_curr_shl1=[]
for i in numpy.linspace(start=vstart, stop=vstop, num=ns):
stim.amp[1]=i
h.tstop=simdur
h.dt=0.01
h.finitialize(-60)
h.run()
#time
ref_t_vec=numpy.zeros_like(t_vec)
t_vec.to_python(ref_t_vec)
ref_t.append(ref_t_vec)
# potassium current
ref_ik_vec=numpy.zeros_like(ik_vec)
ik_vec.to_python(ref_ik_vec)
ref_ik.append(ref_ik_vec)
#calcium currents
ref_ica_vec=numpy.zeros_like(ica_vec)
ica_vec.to_python(ref_ica_vec)
ref_ica.append(ref_ica_vec)
# NCA currents
ref_inca_vec=numpy.zeros_like(inca_vec)
inca_vec.to_python(ref_inca_vec)
ref_inca.append(ref_inca_vec)
# LEAKAGE current
ref_ileakAIY_vec=numpy.zeros_like(ileakAIY_vec)
ileakAIY_vec.to_python(ref_ileakAIY_vec)
ref_ileakAIY.append(ref_ileakAIY_vec)
# total current calculation
itot=[]
itot=map(sum, zip(ref_ik,ref_ica,ref_ileakAIY,ref_inca))
current=numpy.array(list(itot))
inorm=current*1e9*surf #total current in pA
#time array
time1=numpy.array(ref_t)
resc_ind=numpy.where(time1[1,:]>=1000)
resc_min=numpy.amin(resc_ind)
resc_max=numpy.amax(resc_ind)
itot_normalized=inorm[:,resc_min:resc_max]
time=time1[:,resc_min:resc_max]-1000
## CALCULATION OF STEADY-STATE CURRENT-VOLATGE RELATION
ind=numpy.where(numpy.logical_and(time[0]>=550, time[0]<=599))
ind_max=numpy.amax(ind)
ind_min=numpy.amin(ind)
iv=numpy.mean(itot_normalized[:,ind_min:ind_max],axis=1)
# CALCULATION OF PEAK CURRENT-VOLTAGE RELATION
ind2=numpy.where(numpy.logical_and(time[0]>=100, time[0]<=200))
ind2_max=numpy.amax(ind2)
ind2_min=numpy.amin(ind2)
iv_peak=numpy.amax(itot_normalized[:,ind2_min:ind2_max])
iv_peak=[]
for j in range(ns):
if j<=6:
peak=numpy.amin(itot_normalized[j,ind2_min:ind2_max])
else:
peak=numpy.amax(itot_normalized[j,ind2_min:ind2_max])
iv_peak.append(peak)
return itot_normalized, time, iv_peak, iv