-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathother_upsampling.py
289 lines (239 loc) · 9.47 KB
/
other_upsampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
"""
Copright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.
"""
import numpy as np
from scipy.stats import zscore
#if self.quadratic_upsample:
# Y = quadratic_upsampling1D(cc, g)
#elif self.gradient_upsample:
# Y = upsample_grad(cc, self.n_components, self.n_X)
def quadratic_upsampling1D(cc, grid, npts=10):
""" upsample grid using quadratic approximation
sample correlation with grid is cc - ngrid x n_samples """
npts = max(3, npts)
if npts%2!=1:
npts += 1
dims, n_X = grid.shape
n_samples = cc.shape[1]
cbest = cc.argmax(axis=0)
# find peaks and shift to have at least 5 pts
ibest = cbest
imin = np.maximum(0, ibest-npts//2)
ishift = n_X - (ibest+npts//2+1) < 0
imin[ishift] -= (ibest[ishift]+npts//2+1) - n_X
icent = imin + npts//2
# create grid of points
igrid = np.arange(0,npts)
# convert to cc inds
cinds = igrid + imin[:,np.newaxis]
# make float and mean centered for regression
igrid = igrid.astype(np.float32) - npts//2
C = cc[cinds, np.tile(np.arange(0, n_samples)[:,np.newaxis], (1, igrid.size))]
IJ = np.stack((np.ones_like(igrid), igrid**2, igrid), axis=1)
A = np.linalg.solve(IJ.T @ IJ, IJ.T @ C.T)
xmax = np.clip(-A[2] / (2*A[1]), -npts//2, npts//2)
xdelta = np.diff(grid[0,:]).mean()
xmax = xmax*xdelta + grid[0,icent]
Y = xmax[:,np.newaxis]
return Y
def quadratic_upsampling2D(X, cc, x_m, y_m):
n_X = x_m.shape[0]
n_samples = X.shape[0]
cbest = cc.argmax(axis=0)
ibest, jbest = np.unravel_index(cbest, (n_X, n_X))
imin = np.maximum(0, ibest-1)
imin[n_X - (ibest+2) < 0] -= 1
jmin = np.maximum(0, jbest-1)
jmin[n_X - (jbest+2) < 0] -= 1
icent, jcent = imin+1, jmin+1
igrid, jgrid = np.meshgrid(np.arange(0,3), np.arange(0,3), indexing='ij')
igrid, jgrid = igrid.flatten(), jgrid.flatten()
iinds = igrid + imin[:,np.newaxis]
jinds = jgrid + jmin[:,np.newaxis]
igrid = igrid.astype(np.float32) - 1.
jgrid = jgrid.astype(np.float32) - 1.
cinds = np.ravel_multi_index((iinds, jinds), (n_X, n_X))
C = cc[cinds, np.tile(np.arange(0, n_samples)[:,np.newaxis], (1, 9))]
IJ = np.stack((np.ones_like(igrid), igrid**2 + jgrid**2, igrid, jgrid), axis=1)
A = np.linalg.solve(IJ.T @ IJ, IJ.T @ C.T)
xmax = np.clip(-A[2] / (2*A[1]), -1, 1)
ymax = np.clip(-A[3] / (2*A[1]), -1, 1)
# put in original space
xdelta = np.diff(x_m[:,0]).mean()
ydelta = np.diff(y_m[0]).mean()
xmax = xmax*xdelta + x_m[icent,0]
ymax = ymax*ydelta + y_m[0,jcent]
Y = np.stack((xmax, ymax), axis=1)
return Y
def grid_upsampling2(X, X_nodes, Y_nodes, n_X=41, n_neighbors=50):
n_X = 41
x_m = np.linspace(Y_nodes[:,0].min(), Y_nodes[:,0].max(), n_X)
y_m = np.linspace(Y_nodes[:,1].min(), Y_nodes[:,1].max(), n_X)
x_m, y_m = np.meshgrid(x_m, y_m, indexing='ij')
xy = np.vstack((x_m.flatten(), y_m.flatten()))
ds = (xy[0][:,np.newaxis] - Y_nodes[:,0])**2 + (xy[1][:,np.newaxis] - Y_nodes[:,1])**2
isort = np.argsort(ds, 1)[:,:n_neighbors]
nraster = xy.shape[1]
Xrec = np.zeros((nraster, X_nodes.shape[1]))
for j in range(nraster):
ineigh = isort[j]
dists = ds[j, ineigh]
w = np.exp(-dists / dists[7])
M, N = X_nodes[ineigh], Y_nodes[ineigh]
N = np.concatenate((N, np.ones((n_neighbors,1))), axis=1)
R = np.linalg.solve((N.T * w) @ N, (N.T * w) @ M)
Xrec[j] = xy[:,j] @ R[:2] + R[-1]
Xrec = Xrec / (Xrec**2).sum(1)[:,np.newaxis]**.5
cc = Xrec @ zscore(X, 1).T
cc = np.maximum(0, cc)
imax = np.argmax(cc, 0)
Y = xy[:, imax].T
return Y, cc, x_m, y_m
def kriging_upsampling(X, X_nodes, Y_nodes, grid_upsample=10, sig=0.5):
# assume the input is 5 by 5 by 5 by 5.... vectorized
if (Y_nodes==-1).sum()>0:
Xn = X_nodes.copy()[X_nodes!=-1]
Yn = Y_nodes.copy()[Y_nodes!=-1]
nclust = Y_nodes.max()+1
xs = np.arange(0, nclust)
xu = np.arange(0, nclust, 1./grid_upsample)
Kxx = np.exp(-(xs[:,np.newaxis] - xs)**2 / sig)
Kxu = np.exp(-(xs[:,np.newaxis] - xu)**2 / sig)
Km = np.linalg.solve(Kxx + np.eye(Kxx.shape[0]), Kxu)
Xrec = X_nodes[Y_nodes[:,0].argsort()].T @ Km
Xrec = Xrec.T
Xrec = Xrec / (1e-10 + (Xrec**2).sum(axis=1)[:,np.newaxis]**.5)
cc = Xrec @ zscore(X, axis=1).T
cc = np.maximum(0, cc)
imax = np.argmax(cc, 0)
Y = xu[imax].T
Y = Y[:,np.newaxis]
return Y, cc, xu, Xrec
def upsample_grad(CC, dims, nX):
CC /= np.amax(CC, axis=1)[:, np.newaxis]
xid = np.argmax(CC, axis=1)
if dims==2:
ys, xs = np.meshgrid(np.arange(nX), np.arange(nX))
y0 = np.vstack((xs.flatten(), ys.flatten()))
else:
ys = np.arange(nX)
y0 = ys[np.newaxis,:]
eta = .1
y = optimize_neurons(CC, y0[:,xid], y0, eta)
return y
def gradient_descent_neurons(inputs):
CC, yinit, ynodes, eta = inputs
flag = 1
niter = 201 # 201
alpha = 1.
y = yinit
x = 1.
sig = 1.
eta = np.linspace(eta, eta/10, niter)
for j in range(niter):
yy0 = y[:, np.newaxis] - ynodes
if flag:
K = np.exp(-np.sum(yy0**2, axis=0)/(2*sig**2))
else:
yyi = 1 + np.sum(yy0**2, axis=0)
K = 1/yyi**alpha
x = np.sum(K*CC)/np.sum(K**2)
err = (x*K - CC)
if flag:
Kprime = - x * yy0 * K
else:
Kprime = - yy0 * alpha * 1/yyi**(alpha+1)
dy = np.sum(Kprime *err, axis=-1)
y = y - eta[j] * dy
return y
def optimize_neurons(CC, y, ynodes, eta):
inputs = []
for j in range(CC.shape[0]):
inputs.append((CC[j,:], y[:, j], ynodes, eta))
num_cores = multiprocessing.cpu_count()
with Pool(num_cores) as p:
y = p.map(gradient_descent_neurons, inputs)
#y = gradient_descent_neurons((CC, y, ynodes, eta))
y = np.array(y).T
return y
def LLE_upsampling(X, X_nodes, Y_nodes, n_neighbors=10, LLE = 1):
""" X is original space points, X_nodes nodes in original space, Y_nodes nodes in embedding space """
e_dists = ((Y_nodes[:,:,np.newaxis] - Y_nodes.T)**2).sum(axis=1)
cc = -np.sum(X_nodes**2, 1)[:,np.newaxis] - np.sum(X**2, 1) + 2 * X_nodes @ X.T
y = np.zeros((X.shape[0],2))
for i in range(X.shape[0]):
x = X[i]
ineigh0 = cc[:,i].argmax() #cc[:,i].argsort()[::-1][:n_neighbors]
ineigh = e_dists[ineigh0].argsort()[:n_neighbors]
if LLE:
z = X_nodes[ineigh] - x
G = z @ z.T
alpha = 1e-8
w = np.linalg.solve(G + alpha*np.eye(n_neighbors), np.ones(n_neighbors, np.float32))
else:
w = np.linalg.solve(X_nodes[ineigh] @ X_nodes[ineigh].T, X_nodes[ineigh] @ x)
w /= w.sum()
y[i] = w @ Y_nodes[ineigh]
return y
def PCA_upsampling(X, X_nodes, Y_nodes):
from sklearn.decomposition import PCA
n_samples, n_features = X.shape
n_nodes = X_nodes.shape[0]
n_components = Y_nodes.shape[1]
cc = -np.sum(X_nodes**2, 1)[:,np.newaxis] - np.sum(X**2, 1) + 2 * X_nodes @ X.T
inode = cc.argmax(axis=0)
Y = np.zeros((n_samples, 2))
for n in range(n_nodes):
pts = X[inode==n]
delta = PCA(n_components=2).fit_transform(pts)
Y[inode==n] = Y_nodes[n] + 1e-2 * delta
return Y
def knn_upsampling(X, X_nodes, Y_nodes, n_neighbors=10):
n_samples = X.shape[0]
Ndist = np.sum(X_nodes**2, 1)[:,np.newaxis] + np.sum(X**2, 1) - 2 * X_nodes @ X.T
inds_k = Ndist.argsort(axis=0)[:n_neighbors]
Ndist_k = np.sort(Ndist, axis=0)[:n_neighbors]
sigma = Ndist_k[0]
w = np.exp(-1 * Ndist_k / sigma)
w /= w.sum(axis=0)
Y_knn = (w[...,np.newaxis] * Y_nodes[inds_k]).sum(axis=0)
return Y_knn
def subspace_upsampling2(X, X_nodes, Y_nodes, n_neighbors=10):
e_dists = ((Y_nodes[:,:,np.newaxis] - Y_nodes.T)**2).sum(axis=1)
cc = -np.sum(X_nodes**2, 1)[:,np.newaxis] - np.sum(X**2, 1) + 2 * X_nodes @ X.T
#cc = zscore(X_nodes,axis=1) @ zscore(X,axis=1).T
n_samples, n_features = X.shape
n_nodes = X_nodes.shape[0]
n_components = Y_nodes.shape[1]
Y = np.zeros((n_samples, n_components))
for n in range(n_nodes):
ineigh = e_dists[n].argsort()[:n_neighbors]
# min || M - (a * N @ R + b) ||
M, N = X_nodes[ineigh], Y_nodes[ineigh]
ones = np.ones((n_neighbors,1))
a = 1
b = 0
for k in range(1):
cov = M.T @ N
model = PCA(n_components=n_components).fit(cov)
vv = model.components_.T
uv = (cov @ vv.T) / model.singular_values_
R = vv @ uv.T
a = ((M.T @ (N @ R)).sum() - (R.T @ N.T * b).sum()) / (R.T @ N.T @ N @ R).sum()
R1 = np.linalg.solve(N.T @ N, N.T @ M)
print( ((M - N @ R)**2).sum(), ((M - (a *N @ R + b))**2).sum(), ((M - N @ R1)**2).sum())
return Y
if 0:
Y = np.zeros((n_nodes, n_samples, n_components))
rerr = np.zeros((n_nodes, n_samples))
for n in range(n_nodes):
ineigh = e_dists[n].argsort()[:n_neighbors]
M, N = X_nodes[ineigh], Y_nodes[ineigh]
N = np.concatenate((N, np.ones((n_neighbors,1))), axis=1)
R = np.linalg.solve(N.T @ N, N.T @ M)
Xz = X.copy() - R[2]
Y_est[n] = np.linalg.solve(R[:2] @ R[:2].T, R[:2] @ Xz.T).T
rerr[n] = ((Xz - Y_est[n] @ R[:2])**2).sum(axis=1)
# Y = Y_est[rerr.argmin(axis=0), np.arange(0, n_samples)]
Y = Y_est[cc.argmax(axis=0), np.arange(0, n_samples)]
#return Y