Skip to content

Commit 832e4c0

Browse files
adding TOC to readme
1 parent aca7ec9 commit 832e4c0

File tree

1 file changed

+22
-0
lines changed

1 file changed

+22
-0
lines changed

README.md

+22
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,28 @@ Rastermap is a discovery algorithm for neural data. The algorithm was written by
1717

1818
Stringer C., Zhong L., Syeda A., Du F., Kesa M., & Pachitariu M. (2024). Rastermap: a discovery method for neural population recordings. *Nature Neuroscience*. https://doi.org/10.1038/s41593-024-01783-4.
1919

20+
Table of Contents
21+
=================
22+
23+
* [Rastermap](#rastermap)
24+
* [Example notebooks](#example-notebooks)
25+
* [Installation](#installation)
26+
* [Local installation (< 2 minutes)](#local-installation--2-minutes)
27+
* [System requirements](#system-requirements)
28+
* [Instructions](#instructions)
29+
* [Dependencies](#dependencies)
30+
* [Using rastermap](#using-rastermap)
31+
* [GUI](#gui)
32+
* [In a notebook](#in-a-notebook)
33+
* [From the command line](#from-the-command-line)
34+
* [From MATLAB](#from-matlab)
35+
* [Inputs](#inputs)
36+
* [Settings](#settings)
37+
* [Outputs](#outputs)
38+
* [License](#license)
39+
40+
### Example notebooks
41+
2042
Rastermap runs in python 3.8+ and has a graphical user interface (GUI) for running it easily. Rastermap can also be run in a jupyter notebook locally or on google colab, see these demos:
2143
* [rastermap_largescale.ipynb](notebooks/rastermap_largescale.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MouseLand/rastermap/blob/main/notebooks/rastermap_largescale.ipynb) shows how to use it with large-scale data from mouse cortex (> 200 neurons)
2244
* [rastermap_singleneurons.ipynb](notebooks/rastermap_singleneurons.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MouseLand/rastermap/blob/main/notebooks/rastermap_singleneurons.ipynb) shows how to use it with small to medium sized data (< 200 neurons), in this case recorded from rat hippocampus

0 commit comments

Comments
 (0)