forked from erhanbas/pipeline-stitching
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresidual_analysis_for_paper.m
539 lines (440 loc) · 17.2 KB
/
residual_analysis_for_paper.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
% applies descriptor/control pair parameters on a tile
% inputs:
% tile ids: input tiles used in estimation
% descriptor_file: descriptor match file, both in x/y/z
% yml_file: transformation file used to map input tiles to um locations
addpath(genpath('./common'))
addpath(genpath('./visualization_functions'))
brain = '2018-08-01';
if 0
desc_ch = {'0'};
experimentfolder = sprintf('/nrs/mouselight/cluster/classifierOutputs/%s',brain);
matfolder = fullfile(experimentfolder,'matfiles/');
scopefile = fullfile(matfolder,'scopeloc.mat');
descriptorfile = fullfile(matfolder,sprintf('descriptors_ch%s.mat',desc_ch{:})); % accumulated descriptor file
load(scopefile,'scopeloc','neighbors','experimentfolder','inputfolder')
load(fullfile(matfolder,'scopeparams_pertile'),'scopeparams')
load(fullfile(matfolder,'regpts'),'regpts')
load(fullfile(matfolder,'vecfield3D'),'vecfield3D','params')
load(descriptorfile,'descriptors')
load(fullfile(matfolder,'scopeparams_pertile'),'paireddescriptor', ...
'scopeparams', 'curvemodel','params')
checkthese = [1 4 5 7]; % 0 - right - bottom - below
imsize_um = params.imsize_um;
FOV = [params.scopeacqparams.fov_x_size_um params.scopeacqparams.fov_y_size_um params.scopeacqparams.fov_z_size_um];
pixres = FOV./(params.imagesize-1);
input_tile_id = 1000;
neighboring_tile_id = neighbors(input_tile_id,:);
if 0
[paireddescriptor,R,curvemodel] = xymatch_old(...
descriptors,neighbors(:,checkthese),scopeloc,params);
[scopeparams,scopeparams_,paireddescriptor_,curvemodel_] = homographyPerTile6Neighbor(...
params,neighbors,scopeloc,paireddescriptor,R,curvemodel);
end
%% compile descriptor matches
% tot_num_tiles = length(scopeloc.filepath);
% pairGraph = cell(tot_num_tiles,tot_num_tiles);
% %%
% descset = paireddescriptor{3};
% for idx_tile = 1: tot_num_tiles
% neigs = neighbors(idx_tile,:); %[id -x -y +x +y -z +z]
% % onx
% ix = idx_tile;
% X = descset{ix}.onx.X;
% Y = descset{ix}.onx.Y;
%
% iy = neigs(2);
% X = descset{iy}.onx.X;
% Y = descset{iy}.onx.Y;
%
% iy = neigs(5);
% pairGraph{ix,iy}.ony = paireddescriptor{1}{ix}.ony;
% regpts{ix}
% pairGraph{ix,iy}.onz = paireddescriptor{1}{ix}.onz;
%
% descpairs
%
%
%
% end
%% estimate the residule
% idx = 8569;
ctrl = TileEstimator();
ctrl.Vecfield = vecfield3D;
ctrl.Scopeloc = scopeloc;
ctrl.Neigs = neighbors;
ctrl.pixres = pixres;
ctrl.Regpts = regpts;
ctrl.Paireddescriptor = paireddescriptor{1};
ctrl.Scopeparams = scopeparams{1};
%% mrse affine
% stats: mean([xyz, x+1, x-1, y+1, y-1, z+1, z-1])
numtile = length(vecfield3D.path);
[Sest,Sres,Aest,Ares,Cres,residual_onx,residual_ony,residual_onz,stats] = deal(cell(1,numtile));
tic
parfor it = 1:numtile
%%
[Sest{it},Sres{it}] = ctrl.estimateStage(it);
[Aest{it},Ares{it}] = ctrl.estimateAffine(it);
[Cres{it},residual_onx{it}, residual_ony{it}, residual_onz{it}, stats{it}] = ctrl.estimateResidual4ctrl(it);
end
toc
save ./visualization_functions/residual_init_results.mat -v7.3 ...
Sest Sres Aest Ares Cres residual_onx residual_ony residual_onz stats
end
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load ./visualization_functions/residual_init_results.mat Sest Sres Aest Ares Cres residual_onx residual_ony residual_onz stats
load ./visualization_functions/residual_iterated_results.mat Sest Sres Aest Ares Cres residual_onx residual_ony residual_onz stats
%%
% residual_onz_unbiased = residual_onz;
% for it=1:numtile
% residual_onz_unbiased{it} = residual_onz_unbiased{it}-mean(residual_onz_unbiased{it});
% end
%%
%%
% load ./visualization_functions/residual_results.mat Sest Sres Aest Ares Cres residual_onx residual_ony residual_onz stats
%[S_mse,A_mse] = deal(nan(1,numtile));
[C_num, C_mse,C_msex,C_msey,C_msez] = deal(nan(1,numtile));
[CX_num, CX_mse,CX_msex,CX_msey,CX_msez] = deal(nan(1,numtile));
[CY_num, CY_mse,CY_msex,CY_msey,CY_msez] = deal(nan(1,numtile));
[CZ_num, CZ_mse,CZ_msex,CZ_msey,CZ_msez] = deal(nan(1,numtile));
mse_desc = nan(1,numtile);
for it = 1:numtile
%inputval = inputval - mean(inputval);
%if ~isnan(Aest{it}); S_mse(it) = ctrl.meanSqrt(Sres{it}); end
%if ~isnan(Aest{it}); A_mse(it) = ctrl.meanSqrt(Ares{it}); end
inputval = Cres{it};
if ~isnan(Aest{it}) & ~isempty(residual_onz{it}) & ~isempty(inputval); [C_num(it), C_mse(it), C_msex(it), C_msey(it), C_msez(it)] = ctrl.tileStat(inputval); end
inputval = residual_onx{it};
if ~isnan(Aest{it}) & ~isempty(residual_onz{it}) & ~isempty(inputval); [CX_num(it), CX_mse(it), CX_msex(it), CX_msey(it), CX_msez(it)] = ctrl.tileStat(inputval); end
inputval = residual_ony{it};
if ~isnan(Aest{it}) & ~isempty(residual_onz{it}) & ~isempty(inputval); [CY_num(it), CY_mse(it), CY_msex(it), CY_msey(it), CY_msez(it)] = ctrl.tileStat(inputval); end
inputval = residual_onz{it};
if ~isnan(Aest{it}) & ~isempty(residual_onz{it}) & ~isempty(inputval); [CZ_num(it), CZ_mse(it), CZ_msex(it), CZ_msey(it), CZ_msez(it)] = ctrl.tileStat(inputval); end
end
% save mse_results_iterated C_num C_mse C_msex C_msey C_msez CX_num CX_mse CX_msex CX_msey CX_msez CY_num CY_mse CY_msex CY_msey CY_msez CZ_num CZ_mse CZ_msex CZ_msey CZ_msez scopeloc finterior -v7.3
%%
figure
h_ctrl = histogram(C_mse,'BinWidth',.025);
%%
% get mask/inds for interior. This is to prevent outliers due to gelatin
[interior] = valid_inds(scopeloc,1);
maskslices = scopeloc.gridix(:,3) < 1516 & scopeloc.gridix(:,3) > 1444;
finiteTiles = isfinite(C_mse(:));
finterior = find(interior & maskslices & finiteTiles);
%%
residual_stats = nan(numtile,8);
for it = 1:numtile
if ~isnan(Aest{it}) & ~isempty(residual_onz{it})
residual_stats(it,:) = [[size(Cres{it},1), size(residual_onx{it},1), size(residual_ony{it},1), size(residual_onz{it},1)], ...
[ctrl.meanSqrt(Cres{it}), ctrl.meanSqrt(residual_onx{it}), ctrl.meanSqrt(residual_ony{it}-mean(residual_ony{it},'omitnan')), ctrl.meanSqrt(residual_onz{it}-mean(residual_onz{it},'omitnan'))]
];
end
end
% save residual_stats residual_stats finterior
%%
figure
h_ctrl = histogram(residual_stats(finterior,5),'BinWidth',.025);
%%
figs = resStats();
figs.hist_mse(33,C_msex,C_msey,C_msez,finterior) %#ok<FNDSB>
title('residual')
% export_fig(fullfile('./visualization_figures','residual_iter_histogram_x_y_z.png'),'-transparent')
%%
finterior = find(interior & maskslices);
figs = resStats();
figs.hist_mse(34,CZ_msex,CZ_msey,CZ_msez,finterior) %#ok<FNDSB>
title('residual Z')
export_fig(fullfile('./visualization_figures','residualZ_iter_histogram_x_y_z.png'),'-transparent')
%%
save residual_results finterior C_mse C_msex C_msey C_msez CZ_mse CZ_msex CZ_msey CZ_msez
%%
[aa,bb]=max(C_mse(finterior));round([aa finterior(bb)])
it=finterior(bb);
round(scopeloc.loc(finterior(bb),:)*1e3)
%%
%%
figure(11), clf
% scatter3(round(scopeloc.gridix(:,1)),round(scopeloc.gridix(:,2)),round(scopeloc.gridix(:,3)),C_mse)
hold on
theseinds = 1:numtile;
scatter3(round(scopeloc.gridix(theseinds,1)),round(scopeloc.gridix(theseinds,2)),round(scopeloc.gridix(theseinds,3)),C_mse(theseinds))
zlabel('Z')
% axis equal
%%
[C_mse_sorted,sortinds] = sort(C_mse(finterior),'descend');
sortinds = finterior(sortinds);
disp(round(scopeloc.loc(sortinds(1:10),:)*1e3))
% disp(round(scopeloc.gridix(sortinds(1:10),1:3)))
testinds = sortinds(1:10);
sprintf('ind | C_mse | numDesc-x | numDesc-y | numDesc-z | Uniform | percent match')
round([testinds C_mse(testinds)' checkvalid(testinds,1:3) checkvalid(testinds,end-1)*100 checkvalid(testinds,end)*100])
% myplot3(round(scopeloc.gridix(:,1:3)),'o')
% myplot3(round(scopeloc.gridix(interior,1:3)),'r.')
% myplot3(round(scopeloc.gridix(interior,1:3)),'r.')
%%
clear resstats
resstats = resStats();
resstats.Aff = Aest;
resstats.Stg = Sest;
resstats.Stg_res = Sres;
resstats.Aff_res = Ares;
resstats.Ctrl_res = Cres;
resstats.Residual_onx = residual_onx;
resstats.Residual_ony = residual_ony;
resstats.Residual_onz = residual_onz;
resstats.init()
resstats.estimateMSE()
%%
%%
mean_res = nan(numtile,8);
for it = 1:numtile
mean_res(it,:) = [[size(Cres{it},1), size(residual_onx{it},1), size(residual_ony{it},1), size(residual_onz{it},1)], ...
[ctrl.meanSqrt(Cres{it}), ctrl.meanSqrt(residual_onx{it}), ctrl.meanSqrt(residual_ony{it}), ctrl.meanSqrt(residual_onz{it})]
];
end
% save mean_res_vs2 mean_res interior
%% viz
[aa,bb] = max(mean_res(finterior))
finterior(bb)
figure(11), cla
myplot3(round(scopeloc.gridix(:,1:3)),'o')
hold on
myplot3(round(scopeloc.gridix(interior,1:3)),'r.')
myplot3(round(scopeloc.gridix(finterior(bb),1:3)),'ks')
%% histograms
figs = resStats()
figs.hist_mse(32,C_mse,A_mse,S_mse,finterior)
% figs.boxplt(23,C_mse,A_mse,S_mse,finterior)
% export_fig(fullfile('./visualization_figures','residual_histogram.png'),'-transparent')
%% box plot
export_fig(fullfile('./visualization_figures','residual_boxplot.png'),'-transparent')
%%
% figure,
% hist(mean_res(finterior),100)
% figure, hist(mean_res(finterior),100)
%%
disp(sprintf('MeanSE of residuals for %d tiles: %s %s %s',...
sum(isfinite(A_mse)),...
'based on stage |', 'based on affine |', 'based on ctrl'))
disp(sprintf('MeanSE of residuals for %d: %f | %f | %f',...
sum(isfinite(A_mse)),...
mean(S_mse,'omitnan'), mean(A_mse(isfinite(A_mse)),'omitnan'), mean(C_mse(isfinite(A_mse)),'omitnan')))
disp(sprintf('MedianSE of residuals for %d: %f | %f | %f',...
sum(isfinite(A_mse)),...
median(S_mse,'omitnan'), median(A_mse,'omitnan'), median(C_mse,'omitnan')))
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tt = scopeloc.gridix(these_inds,1:3);
% close all
%%
% get indicies of
figure,
imshow(sum(tileImage,3),[])
figure,
imshow(sum(out,3),[])
%%
[A_mse_sorted,A_mse_inds] = sort(A_mse(isfinite(A_mse)),'descend');
[C_mse_sorted,C_mse_inds] = sort(C_mse(isfinite(C_mse)),'descend');
bb = find(A_mse<C_mse);
aa = find(A_mse>C_mse);
cc = find(C_mse>30);
%
figure(13), cla
myplot3(round(scopeloc.loc(bb,:)*1e3),'o')
hold on
myplot3(round(scopeloc.loc(aa,:)*1e3),'r.')
myplot3(round(scopeloc.loc(cc,:)*1e3),'gs')
%%
ctrl.estimateResidual4ctrl(idx_center)
%%
[accumulator_stage,accumulator_descriptor] = ctrl.getDifferences(idx);
%%
idx_center = 8569;
[Aest_idx,res] = ctrl.estimateAffine(idx_center);
mean(sqrt(sum(res.^2,2)))
idx_target = neighbors(idx_center,end);
[Aest_idy,res_idy] = ctrl.estimateAffine(idx_target);
%
tile_descs_center = regpts{idx_center}.X;
tile_descs_target = regpts{idx_center}.Y;
x1 = tile_descs_center * Aest_idx + ctrl.Scopeloc.loc(idx_center,:)*1e3;
x2 = tile_descs_target * Aest_idy + ctrl.Scopeloc.loc(idx_target,:)*1e3;
x1-x2
%%
figure,
myplot3(tile_descs_center,'o')
hold on
myplot3(tile_descs_target,'*')
%%
figure,
myplot3(x1,'o')
hold on
myplot3(x2,'*')
%% estimate the residule
idx_center = 8569;
idx_target = neighbors(idx_center,end);
% along z direction
tile_descs_center = regpts{idx_center}.X;
tile_descs_target = regpts{idx_center}.Y;
%
ctrl = ControlPoints();
ctrl.Vecfield = vecfield3D;
ctrl.Scopeloc = scopeloc;
ctrl.Neigs = neighbors;
ctrl.pixres = pixres;
ctrl.Regpts = regpts;
xyz_center = ctrl.gridLocations(idx_center);
xyz_target = ctrl.gridLocations(idx_target);
control_points_center = ctrl.Vecfield.control(:,:,idx_center)/1e3; % in um
control_points_target = ctrl.Vecfield.control(:,:,idx_target)/1e3; % in um
%%
edgelist = drawPlates(xyz_center,[],[5 5 4]);
figure(111), cla
bbox = round([min([control_points_center;control_points_target]) max([control_points_center;control_points_target])]);
drawPlates(control_points_center,edgelist,[0 0 1],[5 5 4]);
drawPlates(control_points_target,edgelist,[1 1 0],[5 5 4]);
xlim([bbox(1) bbox(4)] + [-1 1]*10)
ylim([bbox(2) bbox(5)] + [-1 1]*10)
zlim([bbox(3) bbox(6)] + [-1 1]*10)
view([-27 15]),
axis off
% export_fig(fullfile('./visualization_figures','ctrl_top_tile.png'),'-transparent')
%
% add descriptor points with transforms
tile_descs_center_ctrl_um = ctrl.interpolatedInstance(xyz_center,control_points_center,tile_descs_center);
tile_descs_target_ctrl_um = ctrl.interpolatedInstance(xyz_target,control_points_target,tile_descs_target);
clc
myplot3(tile_descs_center_ctrl_um,{'bo','MarkerFaceColor','b'})
myplot3(tile_descs_target_ctrl_um,{'yo','MarkerFaceColor','y'})
%%
valid_center = any(~isnan(tile_descs_center_ctrl_um),2);
valid_target = any(~isnan(tile_descs_target_ctrl_um),2);
valid_descs = valid_center & valid_target;
% fix any stage shift problems
cent_stg_um_corr = cent_stg_um+(mean(target_stg_um)-mean(cent_stg_um));
cent_aff_um_corr = cent_aff_um+(mean(target_aff_um)-mean(cent_aff_um)); % need to add x&y
cent_ctrl_um_corr = cent_ctrl_um+(mean(target_ctrl_um,'omitnan')-mean(cent_ctrl_um,'omitnan'));
dif_stg_um = cent_stg_um_corr-target_stg_um;
dif_aff_um = cent_aff_um_corr-target_aff_um;
dif_ctrl_um = cent_ctrl_um_corr-target_ctrl_um;
max(abs(dif_stg_um))
max(abs(dif_aff_um))
%%
% baseline: apply stage transformation
[res_1, cent_stg_um, target_stg_um] = ctrl.residualStageOnZ(idx_center);
[res_2, cent_aff_um, target_aff_um] = ctrl.residualAffineFCOnZ(idx_center);
[res_3, cent_ctrl_um, target_ctrl_um] = ctrl.residualCtrlOnZ(idx_center);
% if we were to rely on just the stage, residual will be
err_stage_um = (norm(res_1)); % in um
% correct the shift/translation only based on match
err_stage_translation_um = sqrt(sum((res_1-mean(res_1)).^2,2)); % in um
% if we were to rely on just the stage, residual will be
err_aff_um = (norm(res_2)); % in um
% correct the shift/translation only based on match
err_aff_translation_um = sqrt(sum((res_2-mean(res_2)).^2,2)); % in um
%%
mean(err_stage_translation_um)
mean(err_aff_translation_um)
% mean(sqrt(sum(res_3.^2,2)),'omitnan')
%%
err_aff_um_1 = norm(res_2(:,1:3));
err_aff_um_2 = norm(res_2(:,4:6));
% correct the affine then shift/translation only based on match
err_aff_translation_um = (norm(res_2(:,4:6)-mean(res_2(:,4:6)))); % in um
%%
edgelist = drawPlates(xyz_center,[],[5 5 4]);
close all
figure(111), cla
drawPlates(control_points_center,edgelist,[0 0 1],[5 5 4]);
drawPlates(control_points_target,edgelist,[1 1 0],[5 5 4]);
%%
figure(11), cla,
set(gca,'Zdir','reverse')
myplot3(cent_stg_um+(mean(target_stg_um)-mean(cent_stg_um)),'+')
hold on
myplot3(target_stg_um,'o')
axis tight equal
title('STAGE only')
figure(12), cla,
set(gca,'Zdir','reverse')
myplot3(cent_aff_um+(mean(target_aff_um)-mean(cent_aff_um)),'+')
hold on
myplot3(target_aff_um,'o')
axis tight equal
title('Affine only')
figure(13), cla,
set(gca,'Zdir','reverse')
myplot3(cent_ctrl_um+(mean(target_ctrl_um)-mean(cent_ctrl_um)),'+')
hold on
myplot3(target_ctrl_um,'o')
axis tight equal
title('ctrl')
%%
%estimated transform
figure(121), cla
myplot3(tile_descs_center-mean(tile_descs_center),'bo')
hold on
myplot3(tile_descs_target-mean(tile_descs_target),'r+')
axis tight equal
% myplot3(xyz_center,'rs')
%%
figure(13), cla,
myplot3(xyz_center,'+')
hold on
myplot3(tile_descs_center,'o')
set(gca,'Zdir','reverse')
% %%
% tile_loc_um_center = scopeloc.loc(idx_center,:)*1e3; %in um
% tile_loc_um_target = scopeloc.loc(idx_target,:)*1e3; %in um
%
% tile_descs_center_um = tile_descs_center.*pixres + tile_loc_um_center;
% tile_descs_target_um = tile_descs_target.*pixres + tile_loc_um_target;
%
% % tile_loc_um_center - tile_loc_um_target
% residual_1 = tile_descs_center_um - tile_descs_target_um;
%
% %%
% aff_center = ctrl.Vecfield.afftile(:,:,idx_center)/1e3; %in um
% aff_target = ctrl.Vecfield.afftile(:,:,idx_target)/1e3; %in um
%
% tile_descs_center_aff_um = aff_center * [tile_descs_center ones(size(tile_descs_center,1),1)]';
% tile_descs_target_aff_um = aff_target * [tile_descs_target ones(size(tile_descs_target,1),1)]';
%
% % tile_loc_um_center - tile_loc_um_target
% residual_2 = [tile_descs_center_aff_um - tile_descs_target_aff_um]';
%% control points
FxU = scatteredInterpolant(xyz_center,control_points_center(:,1),'linear','nearest');
FxV = scatteredInterpolant(xyz_center,control_points_center(:,2),'linear','nearest');
FxW = scatteredInterpolant(xyz_center,control_points_center(:,3),'linear','nearest');
tile_descs_center_ctrl_um = [FxU(tile_descs_center) FxV(tile_descs_center) FxW(tile_descs_center)];
FxU = scatteredInterpolant(xyz_target,control_points_target(:,1),'linear','nearest');
FxV = scatteredInterpolant(xyz_target,control_points_target(:,2),'linear','nearest');
FxW = scatteredInterpolant(xyz_target,control_points_target(:,3),'linear','nearest');
tile_descs_target_ctrl_um = [FxU(tile_descs_target) FxV(tile_descs_target) FxW(tile_descs_target)];
residual_3 = tile_descs_center_ctrl_um - tile_descs_target_ctrl_um;
[res_3, cent_um, target_um] = ctrl.residualCtrlOnZ(idx_center);
%%
%estimated transform
figure(15), cla,
myplot3(control_points_center,'bo')
hold on
myplot3(tile_descs_center_ctrl_um,'m+')
% myplot3(control_points_target,'go')
myplot3(tile_descs_target_ctrl_um,'rd')
set(gca,'Zdir','reverse')
%%
figure(14), cla,
myplot3(xyz_center,'+')
set(gca,'Zdir','reverse')
%%
figure(14), cla
myplot3(tile_descs_center_aff_um','+')
hold on
myplot3(tile_descs_target_aff_um','o')
%% for x&y
% apply affine without FC correction
% apply affine with FC correction
% apply affine with FC/homography estimation
%%
%estimated transform
% myplot3(bottom_tile_descs,'r+')