-
Notifications
You must be signed in to change notification settings - Fork 1
/
build_full_trees_as_named_tree_mats_function.m
207 lines (178 loc) · 11.6 KB
/
build_full_trees_as_named_tree_mats_function.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
function build_full_trees_as_named_tree_mats_function(sample_date, ...
size_threshold, ...
smoothing_filter_width, ...
length_threshold, ...
do_visualize, ...
sampling_interval, ...
maximum_core_count_desired, ...
do_force_computations, ...
do_all_computations_serially)
% Folder names
whole_brain_h5_p_map_file_path = ...
sprintf('/groups/mousebrainmicro/mousebrainmicro/cluster/Reconstructions/%s/whole-brain-p-map-as-h5/whole-brain-p-map.h5', sample_date) ;
whole_brain_h5_p_map_properties_group_path = '/prob0_props' ;
skeleton_graph_mat_file_path = sprintf('/groups/mousebrainmicro/mousebrainmicro/cluster/Reconstructions/%s/skeleton-graph.mat', sample_date) ;
output_folder_path = sprintf('/groups/mousebrainmicro/mousebrainmicro/cluster/Reconstructions/%s/build-brain-output/full-as-named-tree-mats', sample_date) ;
% Extract parameters from p-map .h5 file
origin_heckbertian = h5read(whole_brain_h5_p_map_file_path, [whole_brain_h5_p_map_properties_group_path,'/origin'])/1000 ; % um
spacing_at_top_level = h5read(whole_brain_h5_p_map_file_path, [whole_brain_h5_p_map_properties_group_path,'/spacing'])/1000 ; % um
levels_below_top_level = h5read(whole_brain_h5_p_map_file_path, [whole_brain_h5_p_map_properties_group_path,'/level']) ;
% Break out the 'params'
spacing_at_full_zoom = spacing_at_top_level/2^levels_below_top_level ; % in um, at highest zoom level
% Create the output folder, if needed
if ~exist(output_folder_path, 'file') ,
mkdir(output_folder_path) ;
end
% Load the skeleton graph
load(skeleton_graph_mat_file_path, 'skeleton_graph', 'skeleton_ijks') ;
% "components" are sometimes called "connected components"
%[components, size_from_component_id] = conncomp(G,'OutputForm','cell') ; % cell array, each element a 1d array of node ids in G
fractionated_components_file_path = fullfile(output_folder_path, 'fractionated_components.mat') ;
if exist(fractionated_components_file_path, 'file') && ~do_force_computations ,
load(fractionated_components_file_path, 'component_from_component_id', 'size_from_component_id', 'maximum_component_size') ;
else
%maximum_component_size = inf ;
maximum_component_size = 10e6 ;
[component_from_component_id, size_from_component_id] = connected_components_with_fractionation(skeleton_graph, maximum_component_size) ;
%[component_from_component_id, size_from_component_id] = connected_components_without_fractionation(skeleton_graph) ;
% note that components are sort by size, largest first
save(fractionated_components_file_path, 'component_from_component_id', 'size_from_component_id', 'maximum_component_size', '-v7.3') ;
end
component_count = length(component_from_component_id) ;
max_component_id = component_count ;
component_id_from_component_id = (1:component_count)' ;
fprintf('There are %d components.\n', component_count) ;
if component_count > 0 ,
fprintf('The largest component contains %d nodes.\n', size_from_component_id(1)) ;
end
% This will be useful in various places, so do it once here
A = skeleton_graph.adjacency ; % adjacency matrix, node_count x node_count, with zeros on the diagonal
% This too
skeleton_xyzs = origin_heckbertian + spacing_at_full_zoom .* (skeleton_ijks-0.5) ;
% NB: Using Erhan-style coords, here, to match the existing code.
% Also, Erhan-style coords are Heckbertian, which I think are better
% anyway.
clear skeleton_ijks
runtic = tic;
% Create the output folder if it doesn't exist
if ~exist(output_folder_path, 'dir') ,
mkdir(output_folder_path) ;
end
% Don't process ones that are too small
fprintf('Filtering out components smaller than %d nodes...\n', size_threshold) ;
is_big_enough = (size_from_component_id>size_threshold) ;
component_id_from_processing_index = component_id_from_component_id(is_big_enough) ;
components_to_process_count = length(component_id_from_processing_index) ;
fprintf('%d components left.\n', components_to_process_count) ;
% Figure out which ones already exist
fprintf('Filtering out components for which output already exists...\n') ;
progress_bar = progress_bar_object(components_to_process_count) ;
does_output_exist_from_processing_index = false(1, components_to_process_count) ;
if do_force_computations ,
progress_bar.update(components_to_process_count) ;
else
digits_needed_for_index = floor(log10(max_component_id)) + 1 ;
tree_name_template = sprintf('auto-cc-%%0%dd', digits_needed_for_index) ; % e.g. 'tree-%04d'
for processing_index = 1 : components_to_process_count ,
component_id = ...
component_id_from_processing_index(processing_index) ;
tree_name = sprintf(tree_name_template, component_id) ;
tree_mat_file_name = sprintf('%s.mat', tree_name) ;
tree_mat_file_path = fullfile(output_folder_path, tree_mat_file_name);
does_output_exist_from_processing_index(processing_index) = logical(exist(tree_mat_file_path, 'file')) ;
progress_bar.update() ;
end
end
component_id_from_will_process_index = component_id_from_processing_index(~does_output_exist_from_processing_index) ;
will_process_count = length(component_id_from_will_process_index) ;
fprintf('%d components left.\n', will_process_count) ;
% Figure out how many components are 'big', we'll do those one at a
% time so as not to run out of memory
big_component_threshold = 1e4 ;
if do_all_computations_serially ,
do_process_serially_from_will_process_index = true(size(component_id_from_will_process_index)) ;
else
component_size_from_will_process_index = size_from_component_id(component_id_from_will_process_index) ;
do_process_serially_from_will_process_index = (component_size_from_will_process_index>=big_component_threshold) ;
end
component_id_from_serial_will_process_index = component_id_from_will_process_index(do_process_serially_from_will_process_index) ;
component_id_from_parallel_will_process_index = component_id_from_will_process_index(~do_process_serially_from_will_process_index) ;
%component_size_from_serial_will_process_index = component_size_from_component_id(component_id_from_serial_will_process_index) ;
%component_size_from_parallel_will_process_index = component_size_from_component_id(component_id_from_parallel_will_process_index) ;
components_to_process_serially_count = length(component_id_from_serial_will_process_index) ;
components_to_process_in_parallel_count = length(component_id_from_parallel_will_process_index) ;
fprintf('Starting the serial for loop, going to process %d components...\n', components_to_process_serially_count) ;
pbo = progress_bar_object(components_to_process_serially_count) ;
% Do the big ones in a regular for loop, since each requires a lot of
% memory
for process_serially_index = 1 : components_to_process_serially_count ,
%for process_serially_index = 1 : 100 ,
component_id = component_id_from_serial_will_process_index(process_serially_index) ;
% Process this component
component = component_from_component_id{component_id} ;
xyzs_for_component = skeleton_xyzs(component,:) ;
%G_for_component = G.subgraph(component) ; % very very very slow!
A_for_component = A(component, component) ;
named_tree = tree_from_component_as_function(component_id, ...
max_component_id, ...
A_for_component, ...
xyzs_for_component, ...
size_threshold, ...
smoothing_filter_width, ...
length_threshold, ...
do_visualize, ...
sampling_interval) ;
% If tree too small after pruning, named_tree will be empty
if ~isempty(named_tree) ,
% Compute the output file path
tree_mat_file_name = sprintf('%s.mat', named_tree.name) ;
tree_mat_file_path = fullfile(output_folder_path, tree_mat_file_name);
% Write full tree as a .mat file
save_named_tree_as_mat(tree_mat_file_path, named_tree) ;
end
% Update the progress bar
pbo.update() ;
end
%pbo = progress_bar_object(0) ;
% Do the small ones in a parfor loop, since memory is less of an issue
% for them
fprintf('Starting the parallel for loop, will process %d components...\n', components_to_process_in_parallel_count) ;
use_this_many_cores(maximum_core_count_desired) ;
pbo = progress_bar_object(components_to_process_in_parallel_count) ;
component_from_component_id_as_parpool_constant = parallel.pool.Constant(component_from_component_id) ;
skeleton_xyzs_as_parpool_constant = parallel.pool.Constant(skeleton_xyzs) ;
A_as_parpool_constant = parallel.pool.Constant(A) ;
parfor process_in_parallel_index = 1 : components_to_process_in_parallel_count ,
component_id = component_id_from_parallel_will_process_index(process_in_parallel_index) ;
% Get all the parpool constants
component_from_component_id_local = component_from_component_id_as_parpool_constant.Value ;
skeleton_xyzs_local = skeleton_xyzs_as_parpool_constant.Value ;
A_local = A_as_parpool_constant.Value ;
% Process this component
component = component_from_component_id_local{component_id} ;
xyzs_for_component = skeleton_xyzs_local(component,:) ;
%G_for_component = G_local.subgraph(component) ; % slow slow slow
A_for_component = A_local(component, component) ;
named_tree = tree_from_component_as_function(component_id, ...
max_component_id, ...
A_for_component, ...
xyzs_for_component, ...
size_threshold, ...
smoothing_filter_width, ...
length_threshold, ...
do_visualize, ...
sampling_interval) ;
% If tree too small after pruning, named_tree will be empty
if ~isempty(named_tree) ,
% Compute the output file path
tree_mat_file_name = sprintf('%s.mat', named_tree.name) ;
tree_mat_file_path = fullfile(output_folder_path, tree_mat_file_name);
% Write full tree as a .mat file
save_named_tree_as_mat(tree_mat_file_path, named_tree) ;
end
% Update the progress bar
pbo.update() ;
end
%pbo = progress_bar_object(0) ;
toc(runtic) ;
end