-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstartup.py
332 lines (240 loc) · 10.7 KB
/
startup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# region Importing important imports
from flask import Flask, request, jsonify, Response
import json
import numpy as np
import pandas as pd
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from collections import defaultdict
from datetime import datetime
from dateutil import tz
# endregion Importing important imports
# region Inits
# filenames
SCOREBOARD_DS_NAME = "Content_datathon2023_scoreboard"
EVAL_DS_NAME = "Eval_datathon2023"
EVAL_DF_PATH = "data/eval_datathon2023.pkl"
PRIVATE_PATHS = "configs/private_paths" # deleted later
SCOREBOARD_PATH = "data/scoreboard2023.pkl"
TEAMBOARD_PATH = "data/teamboard2023.pkl"
LOG_PATH = "logs/dt2023.logs"
CMS_KEY = "configs/cms_key.json"
# use creds to create a client to interact with the Google Drive API
SCOPE = ['https://spreadsheets.google.com/feeds',
'https://www.googleapis.com/auth/drive']
CREDS = ServiceAccountCredentials.from_json_keyfile_name(CMS_KEY, SCOPE)
AM_TZ = tz.gettz("Asia/Yerevan")
TASK_REVEAL = datetime(2023, 2, 10, 19, 0, tzinfo = AM_TZ)
ACCEPTING_SUBMISSIONS = datetime(2023, 2, 11, 17, 40, tzinfo = AM_TZ)
END_OF_SUBMISSIONS = datetime(2023, 2, 11, 18, 15, tzinfo = AM_TZ)
team_passwords = defaultdict(lambda: [])
# setting non-public path for updating the dataset to
# avoid google sheet api limit hits by other parties
with open(PRIVATE_PATHS, "r") as f:
p_paths = [p.replace("\n", "") for p in f.readlines()]
del PRIVATE_PATHS
paths = {
"accuracy": "/d2023/accuracy",
"data": "/d2023/data",
"main": "/d2023"
}
NOT_REVEALED_MSG = "I value your acumen and interest, but the task is not yet revealed."
TEAM_NOT_FOUND_MSG = f"Your team was not found in the list, please contact Mher Movsisyan - phone: ({p_paths[3]})."
ENDED_MSG = "The datathon has ended :( \nContact Mher Movsisyan if you think this is a mistake."
DIFF_LEN_MSG = """The length of the list `predictions` doesn't match the evaluation data length.
Also, make sure that the order of predicted labels matches the fetched dataset."""
NOT_ALL_DATA_MSG = "This is not all the data, once the submission process begins you will be \
given a larger dataset through this endpoint."
NOT_KAGGLE = "The URL you provided doesn't lead to a kaggle notebook. Please modify it to do \
so, or if you think this is a mistake, call Mher Movsisyan"
INSTRUCTIONS_DTAPI = f'''To submit your results, make a POST request to the "{paths["accuracy"]}"
endpoint with a JSON object containing the keys `predictions`, `team`, `auth_token`. The
value of `predictions` is a list of model outputs. Don\'t alter the order of the eval data.
You can access the evaluation data by sending a GET request to "{paths["data"]}".''' + \
'''\n
Sample request body:
{
"predictions": [0,0,1,1,0,1,...,1,0,0,1],
"team": "Conquerors",
"auth_token": "secret_token",
"url: "https://www.kaggle.com/code/user/notebook"
}
'''
app = Flask(__name__)
#endregion Inits
# region Gugo's sheets
# region Evaluation dataset
@app.route(p_paths[0])
def fetch_dataset(req=True):
"""Pulls and stores the eval dataset from google sheets onto the file system"""
client = gspread.authorize(CREDS)
wb = client.open(EVAL_DS_NAME)
datasheet = wb.get_worksheet(0)
dataframe = pd.DataFrame(datasheet.get_all_records())
dataframe.to_pickle(EVAL_DF_PATH)
return Response(f"Success: fetched {len(dataframe)} rows worth of data", status=200) if req else dataframe
def load_dataset():
"""Loads eval dataset from the file system, if no file exists it fetches from the google sheets"""
try:
return pd.read_pickle(EVAL_DF_PATH)
except FileNotFoundError as e:
return fetch_dataset(req=False)
# endregion Evaluation dataset
eval_df = load_dataset()
# region Teams
print(p_paths)
@app.route(p_paths[1])
def fetch_teams(req=True):
"""Fetches and stores team credentials"""
client = gspread.authorize(CREDS)
wb = client.open(SCOREBOARD_DS_NAME)
# get teams and their participants
teamsheet = wb.worksheet("teams")
teams_df = pd.DataFrame(teamsheet.get_all_records())
teams_df.to_pickle(TEAMBOARD_PATH)
for i, team, name, password in teams_df.itertuples():
team_passwords[team] += [password]
return Response(f"Success. Participants are {teams_df.Name.values}") if req else teams_df
def load_teams():
"""Loads teams from the file system, if no file exists it fetches from google sheets"""
try:
teams_df = pd.read_pickle(TEAMBOARD_PATH)
for i, team, name, password in teams_df.itertuples():
team_passwords[team] += [password]
return teams_df
except FileNotFoundError as e:
return fetch_teams(req=False)
# endregion Teams
teams_df = load_teams()
# region Scoreboard
@app.route(p_paths[2])
def fetch_scoreboard(req=True):
"""Fetches and stores scoreboard data"""
client = gspread.authorize(CREDS)
wb = client.open(SCOREBOARD_DS_NAME)
scoreboard = wb.worksheet("scoreboard")
score_df = pd.DataFrame(scoreboard.get_all_records())
score_df.to_pickle(SCOREBOARD_PATH)
return Response(f"Success. Teams are {score_df.Team.values}") if req else teams_df
def load_scoreboard():
"""Loads the scoreboard from the file system, if no file exists it fetches from google sheets"""
try:
return pd.read_pickle(SCOREBOARD_PATH)
except FileNotFoundError as e:
return fetch_scoreboard(req=False)
# To make `accept_submission` thread-safe, I will use only write
# to the `scoreboard` sheet and append to the `submissions` sheet
def accept_submission(team, score, url):
"""Handles succesfull submissions in a thread-safe manner"""
այժմ = datetime.now().astimezone(AM_TZ).strftime("%Y-%m-%d %H:%M:%S")
client = gspread.authorize(CREDS)
wb = client.open(SCOREBOARD_DS_NAME)
submissions = wb.worksheet("submissions")
# Append submission to list
submissions.append_row([team, score, այժմ, url])
### Mash the submissions into a scoreboard ###
# Get all submissions
score_df = pd.DataFrame(submissions.get_all_records())
score_df.Score = score_df.Score.astype("float")
# Get the maximum per team
team_max = score_df.groupby("Team").max("Score").reset_index()
_isin = score_df[["Team", "Score"]].stack().isin(team_max.stack().values).unstack()
score_df = score_df[_isin.all(axis=1)].groupby("Team").first().reset_index()
# Sort
score_df = score_df.sort_values("Score", ascending=False)
score_df["Submission Code"] = '<a target="_blank" href="' + score_df["Submission Code"] + '">View code</a>'
# Post updated scoreboard
scoreboard = wb.worksheet("scoreboard")
scoreboard.update([score_df.columns.values.tolist()] + score_df.values.tolist())
score_df.to_pickle(SCOREBOARD_PATH)
return score_df
#endregion Scoreboard
# endregion Gugo's sheets
@app.route(paths["main"], methods=["GET"])
def instructions():
"""Instructs on API usage """
return jsonify({'message': INSTRUCTIONS_DTAPI})
@app.route(paths["accuracy"], methods=["POST"])
def calculate_accuracy():
"""Handles submission requests"""
data = request.get_json()
print("\n" + str(data))
այժմ = datetime.now().astimezone(AM_TZ)
այժմ = datetime(2023, 2, 11, 17, 40, tzinfo = AM_TZ)
competing = False
# region Checks
for k in ["predictions", "team", "auth_token", "url"]:
if k not in data.keys():
return Response(f"Please specify `{k}` in the request.", status=400)
if data["team"] not in team_passwords.keys():
return Response(TEAM_NOT_FOUND_MSG,
status=400)
if data["auth_token"] not in team_passwords[data["team"]]:
return Response("Wrong authentication token.",
status=401)
if ("https://www.kaggle.com/" != data["url"][:23]) and ([i not in data["url"] for i in [
">", "<", "}", "{", "[", "]", '"', "'"
]]):
return Response(NOT_KAGGLE, status=401)
if len(data["predictions"]) != (101 if այժմ < ACCEPTING_SUBMISSIONS else len(eval_df)):
return Response(DIFF_LEN_MSG, status=422)
# endregion Checks
submitted_list = np.array(data['predictions'])
accuracy = -1 # placeholder
if այժմ < TASK_REVEAL:
return Response(json.dumps({"message": NOT_REVEALED_MSG}), status=403)
else:
if այժմ > END_OF_SUBMISSIONS:
return Response(json.dumps({"message": ENDED_MSG}), status=403)
if այժմ < ACCEPTING_SUBMISSIONS:
accuracy = np.sum(eval_df.loc[250:350].Label == data["predictions"])/101
accuracy = np.round(accuracy, 5) * 100
else:
competing = True
if competing:
accuracy = np.sum(eval_df.Label == data["predictions"])/len(eval_df)
accuracy = np.round(accuracy, 5) * 100
accept_submission(data["team"], accuracy, data["url"])
with open(LOG_PATH, "a") as f:
f.write("\n" + "\t".join([
այժմ.strftime("%Y-%m-%d %H:%M:%S"),
str(data["team"]),
str(data["auth_token"]),
str(accuracy)
]))
return jsonify({
"message": "Success." + (" This will be reflected in the scoreboard." if competing else
" This ssubmission will not be reflected on the scoreboard, submit" + \
" again once we start accepting full submissions"),
"team": data["team"],
"accuracy": str(accuracy)
})
@app.route(paths["data"], methods=["GET"])
def serve_data():
"""This is the endpoint used by participants to fetch evaluation data.
(No labels will be sent out)"""
այժմ = datetime.now().astimezone(AM_TZ)
if այժմ < TASK_REVEAL:
return Response(json.dumps({"message": NOT_REVEALED_MSG}), status=403)
else:
if այժմ > END_OF_SUBMISSIONS:
return Response(json.dumps({"message": ENDED_MSG}), status=403)
if այժմ < ACCEPTING_SUBMISSIONS:
return Response(
json.dumps(
{
"data": eval_df.loc[250:350].X.to_list(),
"message": NOT_ALL_DATA_MSG
}
),
status=200)
return Response(
json.dumps(
{
"data": eval_df.X.to_list(),
"message": "Good luck!"
}
),
status=200)
if __name__ == '__main__':
app.run()