forked from SCLBD/DeepfakeBench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stil_detector.py
747 lines (615 loc) · 29 KB
/
stil_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
'''
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-0706
# description: Class for the STILDetector
Functions in the Class are summarized as:
1. __init__: Initialization
2. build_backbone: Backbone-building
3. build_loss: Loss-function-building
4. features: Feature-extraction
5. classifier: Classification
6. get_losses: Loss-computation
7. get_train_metrics: Training-metrics-computation
8. get_test_metrics: Testing-metrics-computation
9. forward: Forward-propagation
Reference:
@inproceedings{gu2021spatiotemporal,
title={Spatiotemporal inconsistency learning for deepfake video detection},
author={Gu, Zhihao and Chen, Yang and Yao, Taiping and Ding, Shouhong and Li, Jilin and Huang, Feiyue and Ma, Lizhuang},
booktitle={Proceedings of the 29th ACM international conference on multimedia},
pages={3473--3481},
year={2021}
}
'''
import os
import datetime
import logging
import numpy as np
from sklearn import metrics
from typing import Union
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.model_zoo as model_zoo
from torch.nn import DataParallel
from torch.utils.tensorboard import SummaryWriter
from metrics.base_metrics_class import calculate_metrics_for_train
from .base_detector import AbstractDetector
from detectors import DETECTOR
from networks import BACKBONE
from loss import LOSSFUNC
logger = logging.getLogger(__name__)
@DETECTOR.register_module(module_name='stil')
class STILDetector(AbstractDetector):
def __init__(self, config):
super().__init__()
self.model = self.build_backbone(config)
self.loss_func = self.build_loss(config)
def build_backbone(self, config):
backbone = STIL_Model(num_class=2, num_segment=config['clip_size'], add_softmax=False)
pretrained_path = config['pretrained']
if pretrained_path:
state_dict = torch.load(pretrained_path)
state_dict = {k.replace("base_", "").replace("model.", ""): v for k, v in state_dict.items()}
state_dict = {"base_model." + k: v for k, v in state_dict.items()}
msg = backbone.load_state_dict(state_dict, False)
print('Missing keys: {}'.format(msg.missing_keys))
print('Unexpected keys: {}'.format(msg.unexpected_keys))
print(f"=> loaded successfully '{pretrained_path}'")
torch.cuda.empty_cache()
return backbone
def build_loss(self, config):
# prepare the loss function
loss_class = LOSSFUNC[config['loss_func']]
loss_func = loss_class()
return loss_func
def features(self, data_dict: dict) -> torch.tensor:
# STIL requires the input with the shape of (n, t*c, h, w), where n is the batch_size, t is num_segment
bs, t, c, h, w = data_dict['image'].shape
inputs = data_dict['image'].view(bs, t*c, h, w)
pred = self.model(inputs)
return pred
def classifier(self, features: torch.tensor):
pass
def get_losses(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label'].long()
pred = pred_dict['cls']
loss = self.loss_func(pred, label)
loss_dict = {'overall': loss}
return loss_dict
def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label']
pred = pred_dict['cls']
# compute metrics for batch data
auc, eer, acc, ap = calculate_metrics_for_train(label.detach(), pred.detach())
metric_batch_dict = {'acc': acc, 'auc': auc, 'eer': eer, 'ap': ap}
# we dont compute the video-level metrics for training
return metric_batch_dict
def forward(self, data_dict: dict, inference=False) -> dict:
# get the prediction by backbone
pred = self.features(data_dict)
# get the probability of the pred
prob = torch.softmax(pred, dim=1)[:, 1]
# build the prediction dict for each output
pred_dict = {'cls': pred, 'prob': prob, 'feat': prob}
return pred_dict
class STIL_Model(nn.Module):
def __init__(self,
num_class=2,
num_segment=8,
add_softmax=False,
**kwargs):
""" Model Builder for STIL model.
STIL: Spatiotemporal Inconsistency Learning for DeepFake Video Detection (https://arxiv.org/abs/2109.01860)
Args:
num_class (int, optional): Number of classes. Defaults to 2.
num_segment (int, optional): Number of segments (frames) fed to the model. Defaults to 8.
add_softmax (bool, optional): Whether to add softmax layer at the end. Defaults to False.
"""
super().__init__()
self.num_class = num_class
self.num_segment = num_segment
self.add_softmax = add_softmax
self.build_model()
def build_model(self):
"""
Construct the model.
"""
self.base_model = scnet50_v1d(self.num_segment, pretrained=True)
fc_feature_dim = self.base_model.fc.in_features
self.base_model.fc = nn.Linear(fc_feature_dim, self.num_class)
if self.add_softmax:
self.softmax_layer = nn.Softmax(dim=1)
def forward(self, x):
"""Forward pass of the model.
Args:
x (torch.tensor): input tensor of shape (n, t*c, h, w). n is the batch_size, t is num_segment
"""
# img channel default to 3
img_channel = 3
# x: [n, tc, h, w] -> [nt, c, h, w]
# out: [nt, num_class]
out = self.base_model(
x.view((-1, img_channel) + x.size()[2:])
)
out = out.view(-1, self.num_segment, self.num_class) # [n, t, num_class]
out = out.mean(1, keepdim=False) # [n, num_class]
if self.add_softmax:
out = self.softmax_layer(out)
return out
def set_segment(self, num_segment):
"""Change num_segment of the model.
Useful when the train and test want to feed different number of frames.
Args:
num_segment (int): New number of segments.
"""
self.num_segment = num_segment
model_urls = {
'scnet50_v1d': 'https://backseason.oss-cn-beijing.aliyuncs.com/scnet/scnet50_v1d-4109d1e1.pth',
}
class ISM_Module(nn.Module):
def __init__(self, k_size=3):
"""The Information Supplement Module (ISM).
Args:
k_size (int, optional): Conv1d kernel_size . Defaults to 3.
"""
super(ISM_Module, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size-1)//2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
"""
Args:
x (torch.tensor): Input tensor of shape (nt, c, h, w)
"""
y = self.avg_pool(x)
y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1)
y = self.sigmoid(y)
return x * y.expand_as(x)
class TIM_Module(nn.Module):
def __init__(self, in_channels, reduction=16, n_segment=8, return_attn=False):
"""The Temporal Inconsistency Module (TIM).
Args:
in_channels (int): Input channel number.
reduction (int, optional): Channel compression ratio r in the split operation.. Defaults to 16.
n_segment (int, optional): Number of input frames.. Defaults to 8.
return_attn (bool, optional): Whether to return the attention part. Defaults to False.
"""
super(TIM_Module, self).__init__()
self.in_channels = in_channels
self.reduction = reduction
self.n_segment = n_segment
self.return_attn = return_attn
self.reduced_channels = self.in_channels // self.reduction
# first conv to shrink input channels
self.conv1 = nn.Conv2d(self.in_channels, self.reduced_channels, kernel_size=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(self.reduced_channels)
self.conv_ht = nn.Conv2d(self.reduced_channels, self.reduced_channels,
kernel_size=(3, 1), padding=(1, 0), groups=self.reduced_channels, bias=False)
self.conv_tw = nn.Conv2d(self.reduced_channels, self.reduced_channels,
kernel_size=(1, 3), padding=(0, 1), groups=self.reduced_channels, bias=False)
self.avg_pool_ht = nn.AvgPool2d((2, 1), (2, 1))
self.avg_pool_tw = nn.AvgPool2d((1, 2), (1, 2))
# HTIE in two directions
self.htie_conv1 = nn.Sequential(
nn.Conv2d(self.reduced_channels, self.reduced_channels, kernel_size=(3, 1), padding=(1, 0), bias=False),
nn.BatchNorm2d(self.reduced_channels),
)
self.vtie_conv1 = nn.Sequential(
nn.Conv2d(self.reduced_channels, self.reduced_channels, kernel_size=(1, 3), padding=(0, 1), bias=False),
nn.BatchNorm2d(self.reduced_channels),
)
self.htie_conv2 = nn.Sequential(
nn.Conv2d(self.reduced_channels, self.reduced_channels, kernel_size=(3, 1), padding=(1, 0), bias=False),
nn.BatchNorm2d(self.reduced_channels),
)
self.vtie_conv2 = nn.Sequential(
nn.Conv2d(self.reduced_channels, self.reduced_channels, kernel_size=(1, 3), padding=(0, 1), bias=False),
nn.BatchNorm2d(self.reduced_channels),
)
self.ht_up_conv = nn.Sequential(
nn.Conv2d(self.reduced_channels, self.in_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(self.in_channels)
)
self.tw_up_conv = nn.Sequential(
nn.Conv2d(self.reduced_channels, self.in_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(self.in_channels)
)
self.sigmoid = nn.Sigmoid()
def feat_ht(self, feat):
"""The H-T branch in the TIM module.
Args:
feat (torch.tensor): Input feature with shape [n, t, c, h, w] (c is in_channels // reduction)
"""
n, t, c, h, w = feat.size()
# [n, t, c, h, w] -> [n, w, c, h, t] -> [nw, c, h, t]
feat_h = feat.permute(0, 4, 2, 3, 1).contiguous().view(-1, c, h, t)
# [nw, c, h, t-1]
feat_h_fwd, _ = feat_h.split([self.n_segment-1, 1], dim=3)
feat_h_conv = self.conv_ht(feat_h)
_, feat_h_conv_fwd = feat_h_conv.split([1, self.n_segment-1], dim=3)
diff_feat_fwd = feat_h_conv_fwd - feat_h_fwd
diff_feat_fwd = F.pad(diff_feat_fwd, [0, 1], value=0) # [nw, c, h, t]
# HTIE, down_up branch
diff_feat_fwd1 = self.avg_pool_ht(diff_feat_fwd) # [nw, c, h//2, t]
diff_feat_fwd1 = self.htie_conv1(diff_feat_fwd1) # [nw, c, h//2, t]
diff_feat_fwd1 = F.interpolate(diff_feat_fwd1, diff_feat_fwd.size()[2:]) # [nw, c, h, t]
# HTIE, direct conv branch
diff_feat_fwd2 = self.htie_conv2(diff_feat_fwd) # [nw, c, h, t]
# [nw, C, h, t]
feat_ht_out = self.ht_up_conv(1/3. * diff_feat_fwd + 1/3. * diff_feat_fwd1 + 1/3. * diff_feat_fwd2)
feat_ht_out = self.sigmoid(feat_ht_out) - 0.5
# [nw, C, h, t] -> [n, w, C, h, t] -> [n, t, C, h, w]
feat_ht_out = feat_ht_out.view(n, w, self.in_channels, h, t).permute(0, 4, 2, 3, 1).contiguous()
# [n, t, C, h, w] -> [nt, C, h, w]
feat_ht_out = feat_ht_out.view(-1, self.in_channels, h, w)
return feat_ht_out
def feat_tw(self, feat):
"""The T-W branch in the TIM module.
Args:
feat (torch.tensor): Input feature with shape [n, t, c, h, w] (c is in_channels // reduction)
"""
n, t, c, h, w = feat.size()
# [n, t, c, h, w] -> [n, h, c, t, w] -> [nh, c, t, w]
feat_w = feat.permute(0, 3, 2, 1, 4).contiguous().view(-1, c, t, w)
# [nh, c, t-1, w]
feat_w_fwd, _ = feat_w.split([self.n_segment-1, 1], dim=2)
feat_w_conv = self.conv_tw(feat_w)
_, feat_w_conv_fwd = feat_w_conv.split([1, self.n_segment-1], dim=2)
diff_feat_fwd = feat_w_conv_fwd - feat_w_fwd
diff_feat_fwd = F.pad(diff_feat_fwd, [0, 0, 0, 1], value=0) # [nh, c, t, w]
# VTIE, down_up branch
diff_feat_fwd1 = self.avg_pool_tw(diff_feat_fwd) # [nh, c, t, w//2]
diff_feat_fwd1 = self.vtie_conv1(diff_feat_fwd1) # [nh, c, t, w//2]
diff_feat_fwd1 = F.interpolate(diff_feat_fwd1, diff_feat_fwd.size()[2:]) # [nh, c, t, w]
# VTIE, direct conv branch
diff_feat_fwd2 = self.vtie_conv2(diff_feat_fwd) # [nh, c, t, w]
# [nh, C, t, w]
feat_tw_out = self.tw_up_conv(1/3. * diff_feat_fwd + 1/3. * diff_feat_fwd1 + 1/3. * diff_feat_fwd2)
feat_tw_out = self.sigmoid(feat_tw_out) - 0.5
# [nh, C, t, w] -> [n, h, C, t, w] -> [n, t, C, h, W]
feat_tw_out = feat_tw_out.view(n, h, self.in_channels, t, w).permute(0, 3, 2, 1, 4).contiguous()
# [n, t, C, h, w] -> [nt, C, h, w]
feat_tw_out = feat_tw_out.view(-1, self.in_channels, h, w)
return feat_tw_out
def forward(self, x):
"""
Args:
x (torch.tensor): Input with shape [nt, c, h, w]
"""
# [nt, c, h, w] -> [nt, c//r, h, w]
bottleneck = self.conv1(x)
bottleneck = self.bn1(bottleneck)
# [nt, c//r, h, w] -> [n, t, c//r, h, w]
bottleneck = bottleneck.view((-1, self.n_segment) + bottleneck.size()[1:])
F_h = self.feat_ht(bottleneck) # [nt, c, h, w]
F_w = self.feat_tw(bottleneck) # [nt, c, h, w]
att = 0.5 * (F_h + F_w)
if self.return_attn:
return att
y2 = x + x * att
return y2
class ShiftModule(nn.Module):
def __init__(self, input_channels, n_segment=8, n_div=8, mode='shift'):
"""A depth-wise conv on the segment level.
Args:
input_channels (int): Input channel number.
n_segment (int, optional): Number of input frames.. Defaults to 8.
n_div (int, optional): How many channels to group as a fold.. Defaults to 8.
mode (str, optional): One of "shift", "fixed", "norm". Defaults to 'shift'.
"""
super(ShiftModule, self).__init__()
self.input_channels = input_channels
self.n_segment = n_segment
self.fold_div = n_div
self.fold = self.input_channels // self.fold_div
self.conv = nn.Conv1d(self.fold_div*self.fold, self.fold_div*self.fold,
kernel_size=3, padding=1, groups=self.fold_div*self.fold,
bias=False)
if mode == 'shift':
self.conv.weight.requires_grad = True
self.conv.weight.data.zero_()
# shift left
self.conv.weight.data[:self.fold, 0, 2] = 1
# shift right
self.conv.weight.data[self.fold: 2 * self.fold, 0, 0] = 1
if 2*self.fold < self.input_channels:
self.conv.weight.data[2 * self.fold:, 0, 1] = 1 # fixed
elif mode == 'fixed':
self.conv.weight.requires_grad = True
self.conv.weight.data.zero_()
self.conv.weight.data[:, 0, 1] = 1 # fixed
elif mode == 'norm':
self.conv.weight.requires_grad = True
def forward(self, x):
"""
Args:
x (torch.tensor): Input with shape [nt, c, h, w]
"""
nt, c, h, w = x.size()
n_batch = nt // self.n_segment
x = x.view(n_batch, self.n_segment, c, h, w)
# (n, h, w, c, t)
x = x.permute(0, 3, 4, 2, 1)
x = x.contiguous().view(n_batch*h*w, c, self.n_segment)
# (n*h*w, c, t)
x = self.conv(x)
x = x.view(n_batch, h, w, c, self.n_segment)
# (n, t, c, h, w)
x = x.permute(0, 4, 3, 1, 2)
x = x.contiguous().view(nt, c, h, w)
return x
class SCConv(nn.Module):
"""
The spatial conv in SIM. Used in SCBottleneck
"""
def __init__(self, inplanes, planes, stride, padding, dilation, groups, pooling_r, norm_layer):
super(SCConv, self).__init__()
self.f_w = nn.Sequential(
nn.AvgPool2d(kernel_size=pooling_r, stride=pooling_r),
nn.Conv2d(inplanes, planes, kernel_size=(1,3), stride=1,
padding=(0,padding), dilation=(1,dilation),
groups=groups, bias=False),
norm_layer(planes), nn.ReLU(inplace=True))
self.f_h = nn.Sequential(
# nn.AvgPool2d(kernel_size=(pooling_r,1), stride=(pooling_r,1)),
nn.Conv2d(inplanes, planes, kernel_size=(3,1), stride=1,
padding=(padding,0), dilation=(dilation,1),
groups=groups, bias=False),
norm_layer(planes),
)
self.k3 = nn.Sequential(
nn.Conv2d(inplanes, planes, kernel_size=3, stride=1,
padding=padding, dilation=dilation,
groups=groups, bias=False),
norm_layer(planes),
)
self.k4 = nn.Sequential(
nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,
padding=padding, dilation=dilation,
groups=groups, bias=False),
norm_layer(planes),
)
def forward(self, x):
identity = x
# sigmoid(identity + k2)
out = torch.sigmoid(
torch.add(
identity,
F.interpolate(self.f_h(self.f_w(x)), identity.size()[2:])
)
)
out = torch.mul(self.k3(x), out) # k3 * sigmoid(identity + k2)
s2t_info = out
out = self.k4(out) # k4
return out, s2t_info
class SCBottleneck(nn.Module):
"""
SCNet SCBottleneck. Variant for ResNet Bottlenect.
"""
expansion = 4
pooling_r = 4 # down-sampling rate of the avg pooling layer in the K3 path of SC-Conv.
def __init__(self, num_segments, inplanes, planes, stride=1, downsample=None,
cardinality=1, bottleneck_width=32,
avd=False, dilation=1, is_first=False,
norm_layer=None):
super(SCBottleneck, self).__init__()
group_width = int(planes * (bottleneck_width / 64.)) * cardinality
self.conv1_a = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)
self.bn1_a = norm_layer(group_width)
self.conv1_b = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)
self.bn1_b = norm_layer(group_width)
self.avd = avd and (stride > 1 or is_first)
self.tim = TIM_Module(group_width, n_segment=num_segments)
self.shift = ShiftModule(group_width, n_segment=num_segments, n_div=8, mode='shift')
self.inplanes = inplanes
self.planes = planes
self.ism = ISM_Module()
self.shift = ShiftModule(group_width, n_segment=num_segments, n_div=8, mode='shift')
if self.avd:
self.avd_layer = nn.AvgPool2d(3, stride, padding=1)
stride = 1
self.k1 = nn.Sequential(
nn.Conv2d(
group_width, group_width, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation,
groups=cardinality, bias=False),
norm_layer(group_width),
)
self.scconv = SCConv(
group_width, group_width, stride=stride,
padding=dilation, dilation=dilation,
groups=cardinality, pooling_r=self.pooling_r, norm_layer=norm_layer)
self.conv3 = nn.Conv2d(
group_width * 2, planes * 4, kernel_size=1, bias=False)
self.bn3 = norm_layer(planes*4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.dilation = dilation
def forward(self, x):
"""Forward func which splits the input into two branchs a and b.
a: trace features
b: spatial features
"""
residual = x
out_a = self.relu(self.bn1_a(self.conv1_a(x)))
out_b = self.relu(self.bn1_b(self.conv1_b(x)))
# spatial representations
out_b, s2t_info = self.scconv(out_b)
out_b = self.relu(out_b)
# trace features
out_a = self.tim(out_a)
out_a = self.shift(out_a + self.ism(s2t_info))
out_a = self.relu(self.k1(out_a))
if self.avd:
out_a = self.avd_layer(out_a)
out_b = self.avd_layer(out_b)
out = self.conv3(torch.cat([out_a, out_b], dim=1))
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class SCNet(nn.Module):
def __init__(self, num_segments, block, layers, groups=1, bottleneck_width=32,
num_classes=1000, dilated=False, dilation=1,
deep_stem=False, stem_width=64, avg_down=False,
avd=False, norm_layer=nn.BatchNorm2d):
"""SCNet, a variant based on ResNet.
Args:
num_segments (int):
Number of input frames.
block (class):
Class for the residual block.
layers (list):
Number of layers in each block.
num_classes (int, optional):
Number of classification class.. Defaults to 1000.
dilated (bool, optional):
Whether to apply dilation conv. Defaults to False.
dilation (int, optional):
The dilation parameter in dilation conv. Defaults to 1.
deep_stem (bool, optional):
Whether to replace 7x7 conv in input stem with 3 3x3 conv. Defaults to False.
stem_width (int, optional):
Stem width in conv1 stem. Defaults to 64.
avg_down (bool, optional):
Whether to use AvgPool instead of stride conv when downsampling in the bottleneck. Defaults to False.
avd (bool, optional):
The avd parameter for the block Defaults to False.
norm_layer (class, optional):
Normalization layer. Defaults to nn.BatchNorm2d.
"""
self.cardinality = groups
self.bottleneck_width = bottleneck_width
# ResNet-D params
self.inplanes = stem_width*2 if deep_stem else 64
self.avg_down = avg_down
self.avd = avd
self.num_segments = num_segments
super(SCNet, self).__init__()
conv_layer = nn.Conv2d
if deep_stem:
self.conv1 = nn.Sequential(
conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False),
norm_layer(stem_width),
nn.ReLU(inplace=True),
conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False),
norm_layer(stem_width),
nn.ReLU(inplace=True),
conv_layer(stem_width, stem_width*2, kernel_size=3, stride=1, padding=1, bias=False),
)
else:
self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer, is_first=False)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer)
if dilated or dilation == 4:
self.layer3 = self._make_layer(block, 256, layers[2], stride=1,
dilation=2, norm_layer=norm_layer)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
dilation=4, norm_layer=norm_layer)
elif dilation==2:
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilation=1, norm_layer=norm_layer)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
dilation=2, norm_layer=norm_layer)
else:
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
norm_layer=norm_layer)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
norm_layer=norm_layer)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, norm_layer):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None,
is_first=True):
"""
Core function to build layers.
"""
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
down_layers = []
if self.avg_down:
if dilation == 1:
down_layers.append(nn.AvgPool2d(kernel_size=stride, stride=stride,
ceil_mode=True, count_include_pad=False))
else:
down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1,
ceil_mode=True, count_include_pad=False))
down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=1, bias=False))
else:
down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False))
down_layers.append(norm_layer(planes * block.expansion))
downsample = nn.Sequential(*down_layers)
layers = []
if dilation == 1 or dilation == 2:
layers.append(block(self.num_segments, self.inplanes, planes, stride, downsample=downsample,
cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd, dilation=1, is_first=is_first,
norm_layer=norm_layer))
elif dilation == 4:
layers.append(block(self.num_segments, self.inplanes, planes, stride, downsample=downsample,
cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd, dilation=2, is_first=is_first,
norm_layer=norm_layer))
else:
raise RuntimeError("=> unknown dilation size: {}".format(dilation))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.num_segments, self.inplanes, planes,
cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd, dilation=dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def features(self, input):
x = self.conv1(input)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def logits(self, features):
x = self.avgpool(features)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def forward(self, input):
x = self.features(input)
x = self.logits(x)
return x
def scnet50_v1d(num_segments, pretrained=False, **kwargs):
"""
SCNet backbone, which is based on ResNet-50
Args:
num_segments (int):
Number of input frames.
pretrained (bool, optional):
Whether to load pretrained weights.
"""
model = SCNet(num_segments, SCBottleneck, [3, 4, 6, 3],
deep_stem=True, stem_width=32, avg_down=True,
avd=True, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['scnet50_v1d']), strict=False)
return model