-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_loader.py
132 lines (110 loc) · 5.46 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
import torch.utils.data
from utils import *
class DataLoader:
def __init__(self, params):
self.params = params
# Loading data
self.train = self.expand(np.load(params.data_dir + 'train.npy'))
self.train_transcript = np.load(params.data_dir + 'train_transcripts.npy')
self.val = self.expand(np.load(params.data_dir + 'dev.npy'))
self.val_transcript = np.load(params.data_dir + 'dev_transcripts.npy')
self.test = self.expand(np.load(params.data_dir + 'test.npy'))
self.max_seq_len = np.max([x.shape[0] for x in self.train] +
[x.shape[0] for x in self.val] +
[x.shape[0] for x in self.test])
self.max_transcript_len = np.max([len(x) for x in self.train_transcript] +
[len(x) for x in self.val_transcript])
# Constructing vocab and charset
self.vocab, self.charset = self.get_vocab(params.use_words)
# Converting transcripts to chars
self.train_label = self.char_to_int(self.train_transcript, params.use_words)
self.val_label = self.char_to_int(self.val_transcript, params.use_words)
# Setting pin memory and number of workers
kwargs = {'num_workers': 4, 'pin_memory': True} if torch.cuda.is_available() else {}
# Creating data loaders
dataset_train = CustomDataSet(self.train, self.train_label, False)
self.train_data_loader = torch.utils.data.DataLoader(dataset_train, batch_size=params.batch_size,
collate_fn=dataset_train.collate, shuffle=True, **kwargs)
dataset_val = CustomDataSet(self.val, self.val_label, False)
self.val_data_loader = torch.utils.data.DataLoader(dataset_val, batch_size=params.batch_size,
collate_fn=dataset_val.collate, shuffle=False, **kwargs)
dataset_test = CustomDataSet(self.test, [], True)
self.test_data_loader = torch.utils.data.DataLoader(dataset_test, batch_size=1,
collate_fn=dataset_test.collate, shuffle=False, **kwargs)
def get_vocab(self, use_words):
vocab = []
charset = {}
i = 1
# Adding start/stop symbol
vocab.append('<s>')
charset['<s>'] = 0
for each_utterance in self.train_transcript:
each_utterance = each_utterance.split(" ") if use_words == 1 else each_utterance
for c in each_utterance:
if c not in charset:
charset[c] = i
vocab.append(c)
i += 1
for each_utterance in self.val_transcript:
each_utterance = each_utterance.split(" ") if use_words == 1 else each_utterance
for c in each_utterance:
if c not in charset:
charset[c] = i
vocab.append(c)
i += 1
return vocab, charset
def char_to_int(self, transcripts, use_words):
char_to_int = []
for transcript in transcripts:
transcript = transcript.split(" ") if use_words == 1 else transcript
# Appending start and stop
char_to_int.append([0] + [self.charset[c] for c in transcript] + [0])
return char_to_int
@staticmethod
def expand(data):
for i, utterance in enumerate(data):
# Repeating last frame
while len(data[i]) % 8 != 0:
data[i] = np.concatenate((data[i], [utterance[-1]]), axis=0)
return data
class CustomDataSet(torch.utils.data.TensorDataset):
def __init__(self, data, labels, is_test):
self.data = data
self.labels = labels
self.num_of_samples = len(self.data)
self.data = self.data
self.is_test = is_test
self.max_seq_len = np.max([x.shape[0] for x in self.data])
def __len__(self):
return self.num_of_samples
def __getitem__(self, idx):
if self.is_test:
return self.data[idx], len(self.data[idx])
return self.data[idx], len(self.data[idx]), self.labels[idx], len(self.labels[idx])
def collate(self, batch):
inputs = np.array([x[0] for x in batch])
input_seq_lens = [x.shape[0] for x in inputs]
sorted_input_seq_len = np.flipud(np.argsort(input_seq_lens))
input_lens = np.array([x[1] for x in batch])[sorted_input_seq_len]
inputs = inputs[sorted_input_seq_len]
utterance_max_len = np.max(input_lens)
padded_input = np.zeros((len(batch), utterance_max_len, 40))
i = 0
for input in inputs:
padded_input[i, :len(input), :] = input
i += 1
if self.is_test:
return to_tensor(padded_input), to_tensor(input_lens).int()
labels = np.array([x[2] for x in batch])[sorted_input_seq_len]
label_lens = np.array([x[3] for x in batch])[sorted_input_seq_len]
max_label_len = np.max(label_lens)
padded_label = np.zeros((len(batch), max_label_len))
label_mask = np.zeros((len(batch), max_label_len))
i = 0
for input in labels:
padded_label[i, :len(input)] = input
label_mask[i, :len(input)] = 1
i += 1
return to_tensor(padded_input), to_tensor(input_lens).int(), \
to_tensor(padded_label).long(), to_tensor(label_lens).int(), to_tensor(label_mask).long()