forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mxnet_to_ort.py
115 lines (97 loc) · 3.38 KB
/
mxnet_to_ort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import sys
import os
import argparse
import onnx
import mxnet as mx
from onnx import helper
from onnx import TensorProto
from onnx import numpy_helper
print('mxnet version:', mx.__version__)
print('onnx version:', onnx.__version__)
assert mx.__version__ >= '1.8', 'mxnet version should >= 1.8'
assert onnx.__version__ >= '1.2.1', 'onnx version should >= 1.2.1'
import numpy as np
from mxnet.contrib import onnx as onnx_mxnet
def create_map(graph_member_list):
member_map={}
for n in graph_member_list:
member_map[n.name]=n
return member_map
parser = argparse.ArgumentParser(description='convert arcface models to onnx')
# general
parser.add_argument('params', default='./r100a/model-0000.params', help='mxnet params to load.')
parser.add_argument('output', default='./r100a.onnx', help='path to write onnx model.')
parser.add_argument('--eps', default=1.0e-8, type=float, help='eps for weights.')
parser.add_argument('--input-shape', default='3,112,112', help='input shape.')
args = parser.parse_args()
input_shape = (1,) + tuple( [int(x) for x in args.input_shape.split(',')] )
params_file = args.params
pos = params_file.rfind('-')
prefix = params_file[:pos]
epoch = int(params_file[pos+1:pos+5])
sym_file = prefix + "-symbol.json"
assert os.path.exists(sym_file)
assert os.path.exists(params_file)
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
eps = args.eps
arg = {}
aux = {}
invalid = 0
ac = 0
for k in arg_params:
v = arg_params[k]
nv = v.asnumpy()
#print(k, nv.dtype)
nv = nv.astype(np.float32)
ac += nv.size
invalid += np.count_nonzero(np.abs(nv)<eps)
nv[np.abs(nv) < eps] = 0.0
arg[k] = mx.nd.array(nv, dtype='float32')
print(invalid, ac)
arg_params = arg
invalid = 0
ac = 0
for k in aux_params:
v = aux_params[k]
nv = v.asnumpy().astype(np.float32)
ac += nv.size
invalid += np.count_nonzero(np.abs(nv)<eps)
nv[np.abs(nv) < eps] = 0.0
aux[k] = mx.nd.array(nv, dtype='float32')
print(invalid, ac)
aux_params = aux
all_args = {}
all_args.update(arg_params)
all_args.update(aux_params)
converted_model_path = onnx_mxnet.export_model(sym, all_args, [input_shape], np.float32, args.output, opset_version=11)
model = onnx.load(args.output)
graph = model.graph
input_map = create_map(graph.input)
node_map = create_map(graph.node)
init_map = create_map(graph.initializer)
#fix PRelu issue
for input_name in input_map.keys():
if input_name.endswith('_gamma'):
node_name = input_name[:-6]
if not node_name in node_map:
continue
node = node_map[node_name]
if node.op_type!='PRelu':
continue
input_shape = input_map[input_name].type.tensor_type.shape.dim
input_dim_val=input_shape[0].dim_value
graph.initializer.remove(init_map[input_name])
weight_array = numpy_helper.to_array(init_map[input_name])
b=[]
for w in weight_array:
b.append(w)
new_nv = helper.make_tensor(input_name, TensorProto.FLOAT, [input_dim_val,1,1], b)
graph.initializer.extend([new_nv])
for init_name in init_map.keys():
weight_array = numpy_helper.to_array(init_map[init_name])
assert weight_array.dtype==np.float32
if init_name in input_map:
graph.input.remove(input_map[init_name])
#support batch-inference
graph.input[0].type.tensor_type.shape.dim[0].dim_param = 'None'
onnx.save(model, args.output)