forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
triplet_image_iter.py
628 lines (589 loc) · 24.4 KB
/
triplet_image_iter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
# THIS FILE IS FOR EXPERIMENTS, USE image_iter.py FOR NORMAL IMAGE LOADING.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
import logging
import sys
import numbers
import math
import sklearn
import datetime
import numpy as np
import cv2
import mxnet as mx
from mxnet import ndarray as nd
#from . import _ndarray_internal as _internal
#from mxnet._ndarray_internal import _cvimresize as imresize
#from ._ndarray_internal import _cvcopyMakeBorder as copyMakeBorder
from mxnet import io
from mxnet import recordio
sys.path.append(os.path.join(os.path.dirname(__file__), 'common'))
import face_preprocess
logger = logging.getLogger()
class FaceImageIter(io.DataIter):
def __init__(self,
batch_size,
data_shape,
path_imgrec=None,
shuffle=False,
aug_list=None,
rand_mirror=False,
cutoff=0,
ctx_num=0,
images_per_identity=0,
triplet_params=None,
mx_model=None,
data_name='data',
label_name='softmax_label',
**kwargs):
super(FaceImageIter, self).__init__()
assert path_imgrec
assert shuffle
logging.info('loading recordio %s...', path_imgrec)
path_imgidx = path_imgrec[0:-4] + ".idx"
self.imgrec = recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') # pylint: disable=redefined-variable-type
s = self.imgrec.read_idx(0)
header, _ = recordio.unpack(s)
assert header.flag > 0
print('header0 label', header.label)
self.header0 = (int(header.label[0]), int(header.label[1]))
#assert(header.flag==1)
self.imgidx = range(1, int(header.label[0]))
self.id2range = {}
self.seq_identity = range(int(header.label[0]), int(header.label[1]))
for identity in self.seq_identity:
s = self.imgrec.read_idx(identity)
header, _ = recordio.unpack(s)
a, b = int(header.label[0]), int(header.label[1])
self.id2range[identity] = (a, b)
print('id2range', len(self.id2range))
self.seq = self.imgidx
print(len(self.seq))
self.check_data_shape(data_shape)
self.provide_data = [(data_name, (batch_size, ) + data_shape)]
self.batch_size = batch_size
self.data_shape = data_shape
self.shuffle = shuffle
self.image_size = '%d,%d' % (data_shape[1], data_shape[2])
self.rand_mirror = rand_mirror
print('rand_mirror', rand_mirror)
self.cutoff = cutoff
#self.cast_aug = mx.image.CastAug()
#self.color_aug = mx.image.ColorJitterAug(0.4, 0.4, 0.4)
self.ctx_num = ctx_num
self.per_batch_size = int(self.batch_size / self.ctx_num)
self.images_per_identity = images_per_identity
if self.images_per_identity > 0:
self.identities = int(self.per_batch_size /
self.images_per_identity)
self.per_identities = self.identities
self.repeat = 3000000.0 / (self.images_per_identity *
len(self.id2range))
self.repeat = int(self.repeat)
print(self.images_per_identity, self.identities, self.repeat)
self.mx_model = mx_model
self.triplet_params = triplet_params
self.triplet_mode = False
#self.provide_label = None
self.provide_label = [(label_name, (batch_size, ))]
if self.triplet_params is not None:
assert self.images_per_identity > 0
assert self.mx_model is not None
self.triplet_bag_size = self.triplet_params[0]
self.triplet_alpha = self.triplet_params[1]
self.triplet_max_ap = self.triplet_params[2]
assert self.triplet_bag_size > 0
assert self.triplet_alpha >= 0.0
assert self.triplet_alpha <= 1.0
self.triplet_mode = True
self.triplet_cur = 0
self.triplet_seq = []
self.triplet_reset()
self.seq_min_size = self.batch_size * 2
self.cur = 0
self.nbatch = 0
self.is_init = False
self.times = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
#self.reset()
def pairwise_dists(self, embeddings):
nd_embedding_list = []
for i in range(self.ctx_num):
nd_embedding = mx.nd.array(embeddings, mx.gpu(i))
nd_embedding_list.append(nd_embedding)
nd_pdists = []
pdists = []
for idx in range(embeddings.shape[0]):
emb_idx = idx % self.ctx_num
nd_embedding = nd_embedding_list[emb_idx]
a_embedding = nd_embedding[idx]
body = mx.nd.broadcast_sub(a_embedding, nd_embedding)
body = body * body
body = mx.nd.sum_axis(body, axis=1)
nd_pdists.append(body)
if len(nd_pdists
) == self.ctx_num or idx == embeddings.shape[0] - 1:
for x in nd_pdists:
pdists.append(x.asnumpy())
nd_pdists = []
return pdists
def pick_triplets(self, embeddings, nrof_images_per_class):
emb_start_idx = 0
triplets = []
people_per_batch = len(nrof_images_per_class)
#self.time_reset()
pdists = self.pairwise_dists(embeddings)
#self.times[3] += self.time_elapsed()
for i in range(people_per_batch):
nrof_images = int(nrof_images_per_class[i])
for j in range(1, nrof_images):
#self.time_reset()
a_idx = emb_start_idx + j - 1
#neg_dists_sqr = np.sum(np.square(embeddings[a_idx] - embeddings), 1)
neg_dists_sqr = pdists[a_idx]
#self.times[3] += self.time_elapsed()
for pair in range(
j, nrof_images): # For every possible positive pair.
p_idx = emb_start_idx + pair
#self.time_reset()
pos_dist_sqr = np.sum(
np.square(embeddings[a_idx] - embeddings[p_idx]))
#self.times[4] += self.time_elapsed()
#self.time_reset()
neg_dists_sqr[emb_start_idx:emb_start_idx +
nrof_images] = np.NaN
if self.triplet_max_ap > 0.0:
if pos_dist_sqr > self.triplet_max_ap:
continue
all_neg = np.where(
np.logical_and(
neg_dists_sqr - pos_dist_sqr < self.triplet_alpha,
pos_dist_sqr <
neg_dists_sqr))[0] # FaceNet selection
#self.times[5] += self.time_elapsed()
#self.time_reset()
#all_neg = np.where(neg_dists_sqr-pos_dist_sqr<alpha)[0] # VGG Face selecction
nrof_random_negs = all_neg.shape[0]
if nrof_random_negs > 0:
rnd_idx = np.random.randint(nrof_random_negs)
n_idx = all_neg[rnd_idx]
triplets.append((a_idx, p_idx, n_idx))
emb_start_idx += nrof_images
np.random.shuffle(triplets)
return triplets
def triplet_reset(self):
#reset self.oseq by identities seq
self.triplet_cur = 0
ids = []
for k in self.id2range:
ids.append(k)
random.shuffle(ids)
self.triplet_seq = []
for _id in ids:
v = self.id2range[_id]
_list = range(*v)
random.shuffle(_list)
if len(_list) > self.images_per_identity:
_list = _list[0:self.images_per_identity]
self.triplet_seq += _list
print('triplet_seq', len(self.triplet_seq))
assert len(self.triplet_seq) >= self.triplet_bag_size
def time_reset(self):
self.time_now = datetime.datetime.now()
def time_elapsed(self):
time_now = datetime.datetime.now()
diff = time_now - self.time_now
return diff.total_seconds()
def select_triplets(self):
self.seq = []
while len(self.seq) < self.seq_min_size:
self.time_reset()
embeddings = None
bag_size = self.triplet_bag_size
batch_size = self.batch_size
#data = np.zeros( (bag_size,)+self.data_shape )
#label = np.zeros( (bag_size,) )
tag = []
#idx = np.zeros( (bag_size,) )
print('eval %d images..' % bag_size, self.triplet_cur)
print('triplet time stat', self.times)
if self.triplet_cur + bag_size > len(self.triplet_seq):
self.triplet_reset()
#bag_size = min(bag_size, len(self.triplet_seq))
print('eval %d images..' % bag_size, self.triplet_cur)
self.times[0] += self.time_elapsed()
self.time_reset()
#print(data.shape)
data = nd.zeros(self.provide_data[0][1])
label = None
if self.provide_label is not None:
label = nd.zeros(self.provide_label[0][1])
ba = 0
while True:
bb = min(ba + batch_size, bag_size)
if ba >= bb:
break
_count = bb - ba
#data = nd.zeros( (_count,)+self.data_shape )
#_batch = self.data_iter.next()
#_data = _batch.data[0].asnumpy()
#print(_data.shape)
#_label = _batch.label[0].asnumpy()
#data[ba:bb,:,:,:] = _data
#label[ba:bb] = _label
for i in range(ba, bb):
#print(ba, bb, self.triplet_cur, i, len(self.triplet_seq))
_idx = self.triplet_seq[i + self.triplet_cur]
s = self.imgrec.read_idx(_idx)
header, img = recordio.unpack(s)
img = self.imdecode(img)
data[i - ba][:] = self.postprocess_data(img)
_label = header.label
if not isinstance(_label, numbers.Number):
_label = _label[0]
if label is not None:
label[i - ba][:] = _label
tag.append((int(_label), _idx))
#idx[i] = _idx
db = mx.io.DataBatch(data=(data, ))
self.mx_model.forward(db, is_train=False)
net_out = self.mx_model.get_outputs()
#print('eval for selecting triplets',ba,bb)
#print(net_out)
#print(len(net_out))
#print(net_out[0].asnumpy())
net_out = net_out[0].asnumpy()
#print(net_out)
#print('net_out', net_out.shape)
if embeddings is None:
embeddings = np.zeros((bag_size, net_out.shape[1]))
embeddings[ba:bb, :] = net_out
ba = bb
assert len(tag) == bag_size
self.triplet_cur += bag_size
embeddings = sklearn.preprocessing.normalize(embeddings)
self.times[1] += self.time_elapsed()
self.time_reset()
nrof_images_per_class = [1]
for i in range(1, bag_size):
if tag[i][0] == tag[i - 1][0]:
nrof_images_per_class[-1] += 1
else:
nrof_images_per_class.append(1)
triplets = self.pick_triplets(embeddings,
nrof_images_per_class) # shape=(T,3)
print('found triplets', len(triplets))
ba = 0
while True:
bb = ba + self.per_batch_size // 3
if bb > len(triplets):
break
_triplets = triplets[ba:bb]
for i in range(3):
for triplet in _triplets:
_pos = triplet[i]
_idx = tag[_pos][1]
self.seq.append(_idx)
ba = bb
self.times[2] += self.time_elapsed()
def hard_mining_reset(self):
#import faiss
from annoy import AnnoyIndex
data = nd.zeros(self.provide_data[0][1])
label = nd.zeros(self.provide_label[0][1])
#label = np.zeros( self.provide_label[0][1] )
X = None
ba = 0
batch_num = 0
while ba < len(self.oseq):
batch_num += 1
if batch_num % 10 == 0:
print('loading batch', batch_num, ba)
bb = min(ba + self.batch_size, len(self.oseq))
_count = bb - ba
for i in range(_count):
idx = self.oseq[i + ba]
s = self.imgrec.read_idx(idx)
header, img = recordio.unpack(s)
img = self.imdecode(img)
data[i][:] = self.postprocess_data(img)
label[i][:] = header.label
db = mx.io.DataBatch(data=(data, self.data_extra), label=(label, ))
self.mx_model.forward(db, is_train=False)
net_out = self.mx_model.get_outputs()
embedding = net_out[0].asnumpy()
nembedding = sklearn.preprocessing.normalize(embedding)
if _count < self.batch_size:
nembedding = nembedding[0:_count, :]
if X is None:
X = np.zeros((len(self.id2range), nembedding.shape[1]),
dtype=np.float32)
nplabel = label.asnumpy()
for i in range(_count):
ilabel = int(nplabel[i])
#print(ilabel, ilabel.__class__)
X[ilabel] += nembedding[i]
ba = bb
X = sklearn.preprocessing.normalize(X)
d = X.shape[1]
t = AnnoyIndex(d, metric='euclidean')
for i in range(X.shape[0]):
t.add_item(i, X[i])
print('start to build index')
t.build(20)
print(X.shape)
k = self.per_identities
self.seq = []
for i in range(X.shape[0]):
nnlist = t.get_nns_by_item(i, k)
assert nnlist[0] == i
for _label in nnlist:
assert _label < len(self.id2range)
_id = self.header0[0] + _label
v = self.id2range[_id]
_list = range(*v)
if len(_list) < self.images_per_identity:
random.shuffle(_list)
else:
_list = np.random.choice(_list,
self.images_per_identity,
replace=False)
for i in range(self.images_per_identity):
_idx = _list[i % len(_list)]
self.seq.append(_idx)
#faiss_params = [20,5]
#quantizer = faiss.IndexFlatL2(d) # the other index
#index = faiss.IndexIVFFlat(quantizer, d, faiss_params[0], faiss.METRIC_L2)
#assert not index.is_trained
#index.train(X)
#index.add(X)
#assert index.is_trained
#print('trained')
#index.nprobe = faiss_params[1]
#D, I = index.search(X, k) # actual search
#print(I.shape)
#self.seq = []
#for i in range(I.shape[0]):
# #assert I[i][0]==i
# for j in range(k):
# _label = I[i][j]
# assert _label<len(self.id2range)
# _id = self.header0[0]+_label
# v = self.id2range[_id]
# _list = range(*v)
# if len(_list)<self.images_per_identity:
# random.shuffle(_list)
# else:
# _list = np.random.choice(_list, self.images_per_identity, replace=False)
# for i in range(self.images_per_identity):
# _idx = _list[i%len(_list)]
# self.seq.append(_idx)
def reset(self):
"""Resets the iterator to the beginning of the data."""
print('call reset()')
self.cur = 0
if self.images_per_identity > 0:
if self.triplet_mode:
self.select_triplets()
elif not self.hard_mining:
self.seq = []
idlist = []
for _id in self.id2range:
v = self.id2range[_id]
idlist.append((_id, range(*v)))
for r in range(self.repeat):
if r % 10 == 0:
print('repeat', r)
if self.shuffle:
random.shuffle(idlist)
for item in idlist:
_id = item[0]
_list = item[1]
#random.shuffle(_list)
if len(_list) < self.images_per_identity:
random.shuffle(_list)
else:
_list = np.random.choice(_list,
self.images_per_identity,
replace=False)
for i in range(self.images_per_identity):
_idx = _list[i % len(_list)]
self.seq.append(_idx)
else:
self.hard_mining_reset()
print('seq len', len(self.seq))
else:
if self.shuffle:
random.shuffle(self.seq)
if self.seq is None and self.imgrec is not None:
self.imgrec.reset()
def num_samples(self):
return len(self.seq)
def next_sample(self):
while True:
if self.cur >= len(self.seq):
raise StopIteration
idx = self.seq[self.cur]
self.cur += 1
s = self.imgrec.read_idx(idx)
header, img = recordio.unpack(s)
label = header.label
if not isinstance(label, numbers.Number):
label = label[0]
return label, img, None, None
def brightness_aug(self, src, x):
alpha = 1.0 + random.uniform(-x, x)
src *= alpha
return src
def contrast_aug(self, src, x):
alpha = 1.0 + random.uniform(-x, x)
coef = np.array([[[0.299, 0.587, 0.114]]])
gray = src * coef
gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray)
src *= alpha
src += gray
return src
def saturation_aug(self, src, x):
alpha = 1.0 + random.uniform(-x, x)
coef = np.array([[[0.299, 0.587, 0.114]]])
gray = src * coef
gray = np.sum(gray, axis=2, keepdims=True)
gray *= (1.0 - alpha)
src *= alpha
src += gray
return src
def color_aug(self, img, x):
augs = [self.brightness_aug, self.contrast_aug, self.saturation_aug]
random.shuffle(augs)
for aug in augs:
#print(img.shape)
img = aug(img, x)
#print(img.shape)
return img
def mirror_aug(self, img):
_rd = random.randint(0, 1)
if _rd == 1:
for c in range(img.shape[2]):
img[:, :, c] = np.fliplr(img[:, :, c])
return img
def next(self):
if not self.is_init:
self.reset()
self.is_init = True
"""Returns the next batch of data."""
#print('in next', self.cur, self.labelcur)
self.nbatch += 1
batch_size = self.batch_size
c, h, w = self.data_shape
batch_data = nd.empty((batch_size, c, h, w))
if self.provide_label is not None:
batch_label = nd.empty(self.provide_label[0][1])
i = 0
try:
while i < batch_size:
label, s, bbox, landmark = self.next_sample()
_data = self.imdecode(s)
if self.rand_mirror:
_rd = random.randint(0, 1)
if _rd == 1:
_data = mx.ndarray.flip(data=_data, axis=1)
if self.cutoff > 0:
centerh = random.randint(0, _data.shape[0] - 1)
centerw = random.randint(0, _data.shape[1] - 1)
half = self.cutoff // 2
starth = max(0, centerh - half)
endh = min(_data.shape[0], centerh + half)
startw = max(0, centerw - half)
endw = min(_data.shape[1], centerw + half)
_data = _data.astype('float32')
#print(starth, endh, startw, endw, _data.shape)
_data[starth:endh, startw:endw, :] = 127.5
#_npdata = _data.asnumpy()
#if landmark is not None:
# _npdata = face_preprocess.preprocess(_npdata, bbox = bbox, landmark=landmark, image_size=self.image_size)
#if self.rand_mirror:
# _npdata = self.mirror_aug(_npdata)
#if self.mean is not None:
# _npdata = _npdata.astype(np.float32)
# _npdata -= self.mean
# _npdata *= 0.0078125
#nimg = np.zeros(_npdata.shape, dtype=np.float32)
#nimg[self.patch[1]:self.patch[3],self.patch[0]:self.patch[2],:] = _npdata[self.patch[1]:self.patch[3], self.patch[0]:self.patch[2], :]
#_data = mx.nd.array(nimg)
data = [_data]
try:
self.check_valid_image(data)
except RuntimeError as e:
logging.debug('Invalid image, skipping: %s', str(e))
continue
#print('aa',data[0].shape)
#data = self.augmentation_transform(data)
#print('bb',data[0].shape)
for datum in data:
assert i < batch_size, 'Batch size must be multiples of augmenter output length'
#print(datum.shape)
batch_data[i][:] = self.postprocess_data(datum)
if self.provide_label is not None:
batch_label[i][:] = label
i += 1
except StopIteration:
if i < batch_size:
raise StopIteration
#print('next end', batch_size, i)
_label = None
if self.provide_label is not None:
_label = [batch_label]
return io.DataBatch([batch_data], _label, batch_size - i)
def check_data_shape(self, data_shape):
"""Checks if the input data shape is valid"""
if not len(data_shape) == 3:
raise ValueError(
'data_shape should have length 3, with dimensions CxHxW')
if not data_shape[0] == 3:
raise ValueError(
'This iterator expects inputs to have 3 channels.')
def check_valid_image(self, data):
"""Checks if the input data is valid"""
if len(data[0].shape) == 0:
raise RuntimeError('Data shape is wrong')
def imdecode(self, s):
"""Decodes a string or byte string to an NDArray.
See mx.img.imdecode for more details."""
img = mx.image.imdecode(s) #mx.ndarray
return img
def read_image(self, fname):
"""Reads an input image `fname` and returns the decoded raw bytes.
Example usage:
----------
>>> dataIter.read_image('Face.jpg') # returns decoded raw bytes.
"""
with open(os.path.join(self.path_root, fname), 'rb') as fin:
img = fin.read()
return img
def augmentation_transform(self, data):
"""Transforms input data with specified augmentation."""
for aug in self.auglist:
data = [ret for src in data for ret in aug(src)]
return data
def postprocess_data(self, datum):
"""Final postprocessing step before image is loaded into the batch."""
return nd.transpose(datum, axes=(2, 0, 1))
class FaceImageIterList(io.DataIter):
def __init__(self, iter_list):
assert len(iter_list) > 0
self.provide_data = iter_list[0].provide_data
self.provide_label = iter_list[0].provide_label
self.iter_list = iter_list
self.cur_iter = None
def reset(self):
self.cur_iter.reset()
def next(self):
self.cur_iter = random.choice(self.iter_list)
while True:
try:
ret = self.cur_iter.next()
except StopIteration:
self.cur_iter.reset()
continue
return ret