forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
drop.py
212 lines (204 loc) · 6.82 KB
/
drop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import shutil
import datetime
import sys
from mxnet import ndarray as nd
import mxnet as mx
import random
import argparse
import numbers
import cv2
import time
import pickle
import sklearn
import sklearn.preprocessing
from easydict import EasyDict as edict
import numpy as np
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'common'))
from rec_builder import *
def get_embedding(args, imgrec, a, b, image_size, model):
ocontents = []
for idx in range(a, b):
s = imgrec.read_idx(idx)
ocontents.append(s)
embeddings = None
#print(len(ocontents))
ba = 0
rlabel = -1
imgs = []
contents = []
while True:
bb = min(ba + args.batch_size, len(ocontents))
if ba >= bb:
break
_batch_size = bb - ba
#_batch_size2 = max(_batch_size, args.ctx_num)
_batch_size2 = _batch_size
if _batch_size % args.ctx_num != 0:
_batch_size2 = ((_batch_size // args.ctx_num) + 1) * args.ctx_num
data = np.zeros((_batch_size2, 3, image_size[0], image_size[1]))
count = bb - ba
ii = 0
for i in range(ba, bb):
header, img = mx.recordio.unpack(ocontents[i])
contents.append(img)
label = header.label
if not isinstance(label, numbers.Number):
label = label[0]
if rlabel < 0:
rlabel = int(label)
img = mx.image.imdecode(img)
rgb = img.asnumpy()
bgr = rgb[:, :, ::-1]
imgs.append(bgr)
img = rgb.transpose((2, 0, 1))
data[ii] = img
ii += 1
while ii < _batch_size2:
data[ii] = data[0]
ii += 1
nddata = nd.array(data)
db = mx.io.DataBatch(data=(nddata, ))
model.forward(db, is_train=False)
net_out = model.get_outputs()
net_out = net_out[0].asnumpy()
if embeddings is None:
embeddings = np.zeros((len(ocontents), net_out.shape[1]))
embeddings[ba:bb, :] = net_out[0:_batch_size, :]
ba = bb
embeddings = sklearn.preprocessing.normalize(embeddings)
return embeddings, rlabel, contents
def main(args):
print(args)
image_size = (112, 112)
print('image_size', image_size)
vec = args.model.split(',')
prefix = vec[0]
epoch = int(vec[1])
print('loading', prefix, epoch)
ctx = []
cvd = os.environ['CUDA_VISIBLE_DEVICES'].strip()
if len(cvd) > 0:
for i in range(len(cvd.split(','))):
ctx.append(mx.gpu(i))
if len(ctx) == 0:
ctx = [mx.cpu()]
print('use cpu')
else:
print('gpu num:', len(ctx))
args.ctx_num = len(ctx)
args.batch_size *= args.ctx_num
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
W = None
i = 0
while True:
key = 'fc7_%d_weight' % i
i += 1
if key not in arg_params:
break
_W = arg_params[key].asnumpy()
#_W = _W.reshape( (-1, 10, 512) )
if W is None:
W = _W
else:
W = np.concatenate((W, _W), axis=0)
K = args.k
W = sklearn.preprocessing.normalize(W)
W = W.reshape((-1, K, 512))
all_layers = sym.get_internals()
sym = all_layers['fc1_output']
model = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
model.bind(data_shapes=[('data', (args.ctx_num, 3, image_size[0],
image_size[1]))])
model.set_params(arg_params, aux_params)
print('W:', W.shape)
path_imgrec = os.path.join(args.data, 'train.rec')
path_imgidx = os.path.join(args.data, 'train.idx')
imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') # pylint: disable=redefined-variable-type
id_list = []
s = imgrec.read_idx(0)
header, _ = mx.recordio.unpack(s)
assert header.flag > 0
print('header0 label', header.label)
header0 = (int(header.label[0]), int(header.label[1]))
#assert(header.flag==1)
imgidx = range(1, int(header.label[0]))
id2range = {}
a, b = int(header.label[0]), int(header.label[1])
seq_identity = range(a, b)
print(len(seq_identity))
image_count = 0
pp = 0
for wid, identity in enumerate(seq_identity):
pp += 1
s = imgrec.read_idx(identity)
header, _ = mx.recordio.unpack(s)
contents = []
a, b = int(header.label[0]), int(header.label[1])
_count = b - a
id_list.append((wid, a, b, _count))
image_count += _count
pp = 0
if not os.path.exists(args.output):
os.makedirs(args.output)
ret = np.zeros((image_count, K + 1), dtype=np.float32)
output_dir = args.output
builder = SeqRecBuilder(output_dir)
print(ret.shape)
imid = 0
da = datetime.datetime.now()
label = 0
num_images = 0
cos_thresh = np.cos(np.pi * args.threshold / 180.0)
for id_item in id_list:
wid = id_item[0]
pp += 1
if pp % 40 == 0:
db = datetime.datetime.now()
print('processing id', pp, (db - da).total_seconds())
da = db
x, _, contents = get_embedding(args, imgrec, id_item[1], id_item[2],
image_size, model)
subcenters = W[wid]
K_stat = np.zeros((K, ), dtype=np.int)
for i in range(x.shape[0]):
_x = x[i]
sim = np.dot(subcenters, _x) # len(sim)==K
mc = np.argmax(sim)
K_stat[mc] += 1
dominant_index = np.argmax(K_stat)
dominant_center = subcenters[dominant_index]
sim = np.dot(x, dominant_center)
idx = np.where(sim > cos_thresh)[0]
num_drop = x.shape[0] - len(idx)
if len(idx) == 0:
continue
#print("labelid %d dropped %d, from %d to %d"% (wid, num_drop, x.shape[0], len(idx)))
num_images += len(idx)
for _idx in idx:
c = contents[_idx]
builder.add(label, c, is_image=False)
label += 1
builder.close()
print('total:', num_images)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
# general
parser.add_argument('--data',
default='/bigdata/faces_ms1m_full',
type=str,
help='')
parser.add_argument('--output',
default='/bigdata/ms1m_full_k3drop075',
type=str,
help='')
parser.add_argument(
'--model',
default=
'../Evaluation/IJB/pretrained_models/r50-arcfacesc-msf-k3z/model,2',
help='path to load model.')
parser.add_argument('--batch-size', default=16, type=int, help='')
parser.add_argument('--threshold', default=75, type=float, help='')
parser.add_argument('--k', default=3, type=int, help='')
args = parser.parse_args()
main(args)