-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonpc_v2_tester.py
508 lines (384 loc) · 18.2 KB
/
onpc_v2_tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import binascii
import concurrent.futures
import copy
import functools
import hashlib
import io
import itertools
import json
import logging
import logging.handlers
import glob
from operator import itemgetter
import os
import pickle
import time
import click
from glom import glom
from jinja2 import FileSystemLoader, Environment
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
from pint import UnitRegistry
import psutil
from tqdm import tqdm
import yaml
ureg = UnitRegistry()
def split_num_list(ctx, param, value):
if value is None or value == '':
return [None]
try:
try:
return [int(x) for x in value.split(',') if x]
except ValueError:
return [float(x) for x in value.split(',') if x]
except ValueError:
raise click.BadParameter('List must only contain numbers')
def analyze_experiment(experiment_folder):
files = glob.glob(os.path.join(experiment_folder, '*.log'))
with open(os.path.join(experiment_folder, 'config.yaml')) as f:
config = yaml.load(f)
with open(os.path.join(experiment_folder, 'results.json')) as f:
results = json.load(f)
successful = sum(1 for value in results.values() if value)
total = len(results.values())
return {"folder": experiment_folder,
"config": config,
"successful": successful,
"total": total}
def check_config(config):
if 'seed' in config and not click.confirm('Seed is set in the configuration file. Are you sure about that?'):
exit()
@click.group()
def cli():
pass
def get_consecutive_number_groups(lst, tolerence=20):
groups = itertools.groupby(enumerate(lst), lambda x: x[0]-x[1])
try:
prev = list(map(itemgetter(1), next(groups)[1]))
except StopIteration:
# This means groups is empty
return []
for k, g in groups:
current = list(map(itemgetter(1), g))
if current[0] - prev[-1] < tolerence:
prev.extend(current)
continue
yield prev
prev = current
yield prev
def create_graph(experiment_result, location):
sample_period = experiment_result.sample_period
fig, axs = plt.subplots(len(experiment_result.results) * 2, 1, figsize=(8,6), sharex=True)
for i, result in enumerate(experiment_result.results.values()):
axs[i * 2].plot(np.arange(len(result.samples)) * sample_period,
result.samples, '.', markersize=.7)
axs[i * 2 + 1].plot(np.arange(len(result.threshold)) * sample_period, result.threshold, color='green', linewidth=1)
axs[i * 2 + 1].plot(np.arange(len(result.correlation)) * sample_period, result.correlation, linewidth=1)
axs[i * 2 + 1].set_ylabel(result.name.title())
if result.detected_signal:
xs, ys = zip(*result.detected_signal)
axs[i * 2 + 1].scatter(xs * sample_period, ys,
marker='x',
color='yellow')
axs[-1].set_xlabel('Time (s)')
plt.tight_layout()
if isinstance(location, str):
name = f"{experiment_result.metadata['distance']}-{experiment_result.metadata['location']}-{experiment_result.metadata['experiment_number']}"
# plt.savefig(os.path.join(location, f'{name}.pdf'))
plt.savefig(os.path.join(location, f'{name}.png'), dpi=300)
else:
# Treat location as file
plt.savefig(location, format='png', dpi=300)
plt.close(fig)
# def create_graph(result, location):
# original_samples = result.original_result.samples
# samples = result.limited_result.samples
# sample_period = result.sample_period
# detected_signal = result.limited_result.detected_signal
# correlation = result.limited_result.correlation
# correlation_threshold_high = result.limited_result.threshold
# fig, (ax0, ax1, ax3) = plt.subplots(3, 1, figsize=(8,4), sharex=True)
# ax0.plot(np.arange(len(original_samples)) * sample_period, original_samples, '.', markersize=.7)
# ax0.set_xlabel('Time (s)')
# # Plot the raw samples
# ax1.plot(np.arange(len(samples)) * sample_period, samples, '.', markersize=.7)
# if detected_signal:
# x, y = zip(*detected_signal)
# ax3.scatter(x * sample_period, y,
# marker='x',
# color='yellow')
# ax3.plot(np.arange(len(correlation_threshold_high)) * sample_period, correlation_threshold_high, color='green', label='upper threshold')
# # ax3.plot(correlation_threshold_low, color='orange', label='lower threshold')
# ax3.plot(np.arange(len(correlation)) * sample_period, correlation, label='correlation')
# ax3.set_xlim(ax1.get_xlim())
# ax3.set_xlabel('Time (s)')
# # plt.legend()
# plt.tight_layout()
# if isinstance(location, str):
# name = f"{result.metadata['distance']}-{result.metadata['location']}-{result.metadata['experiment_number']}"
# # plt.savefig(os.path.join(location, f'{name}.pdf'))
# plt.savefig(os.path.join(location, f'{name}.png'), dpi=300)
# else:
# # Treat location as file
# plt.savefig(location, format='png', dpi=300)
# plt.close(fig)
def generate_graph(result):
graph_data = io.BytesIO()
graph = create_graph(result, graph_data)
data = binascii.b2a_base64(graph_data.getvalue(), newline=False)
return f"data:image/png;base64,{data.decode()}"
def get_unique_id(result):
return result.name
def get_details(result):
return {'Run #': result.metadata['experiment_number'],
'Transmitting': result.metadata.get('transmitting', True),
'Run time': result.metadata['run_time'],
'Filename': result.name}
def get_symbol_groups(result, tolerence, result_name='main'):
if result_name == 'main':
detected_signal_index = [x for x, y in result.main_result.detected_signal]
else:
detected_signal_index = [x for x, y in result.results[result_name].detected_signal]
groups = list(get_consecutive_number_groups(detected_signal_index, tolerence=tolerence))
new_groups = []
groups_first_value = np.array([g[0] for g in groups])
diffs_between_groups = np.diff(groups_first_value)
return groups, diffs_between_groups
def get_symbol_summary(result):
groups, diffs_between_groups = get_symbol_groups(result)
str_out = io.StringIO()
for i, group in enumerate(groups):
str_out.write(f'{group}\n')
if i < len(diffs_between_groups):
str_out.write(f' |\n')
str_out.write(f' | {diffs_between_groups[i]}\n')
str_out.write(f' |\n')
str_out.write(f' v\n')
return str_out.getvalue()
def get_symbols(result, offset_limit=.3, tolerence=20, result_name='main'):
groups, diffs_between_groups = get_symbol_groups(result, tolerence=tolerence, result_name=result_name)
# print(groups)
run_time = result.metadata['run_time']
chip_time = ureg(result.metadata['chip_time']).magnitude / 1e3
symbol_size = result.metadata.get('symbol_size', 1023)
symbol_time = chip_time * symbol_size
all_found_peaks = []
for start_index in range(len(groups)):
# print("-------", start_index, "-------")
good_groups = []
bad_groups = []
prev_diff = 0
peak = np.array(groups[start_index]).mean()
# print(peak)
peaks = np.array([np.array(group).mean() for group in groups[start_index:]])
peaks -= peak # Put peak at zero
peaks_times = peaks * result.sample_period.magnitude # Convert from sample number to time
# print(peaks_times + peak * result.sample_period.magnitude)
peaks_symbol_times = peaks_times / symbol_time # Convert to number of symbols away
offsets = peaks_symbol_times % 1 # Remove whole number (we only care about offset)
# print(np.diff(peaks_times))
enough_space = list(np.diff(peaks_times) > 10)
enough_space = np.array([True] + enough_space) # Need to pad the first value
# print(peaks_symbol_times)
# print(offsets)
detected_symbol = np.logical_and(enough_space,
np.logical_or(offsets < offset_limit,
offsets > 1-offset_limit))
found_peaks = np.where(detected_symbol)[0]
found_peaks += start_index
# print(found_peaks)
all_found_peaks.append(found_peaks)
if len(all_found_peaks) == 0:
return [], []
most_peaks = max(all_found_peaks, key=lambda x: len(x))
good_groups = []
bad_groups = []
for i, group in enumerate(groups):
if i in most_peaks:
good_groups.append(group)
else:
bad_groups.append(group)
return good_groups, bad_groups
def get_result_score(result):
good, bad = get_symbols(result)
run_time = result.metadata['run_time']
chip_time = ureg(result.metadata['chip_time']).magnitude / 1e3
symbol_size = result.metadata.get('symbol_size', 1023)
symbol_time = chip_time * symbol_size
expected_received_symbols = round((run_time - symbol_time) / symbol_time)
if not result.metadata.get('transmitting', True):
return {"Total": 0,
"Correct": 0,
"False positive": len(good) + len(bad)}
return {"Total": expected_received_symbols,
"Correct": len(good),
"False positive": len(bad)}
def get_all_results_score(results):
result_scores = [get_result_score(result) for result in results]
return glom(result_scores, {'Total': (['Total'], sum),
'Correct': (['Correct'], sum),
'False positive': (['False positive'], sum)})
def onpc(data_file, folder, lpf_size=30, threshold_size=600, threshold_lag=100,
threshold_std=4.0, rank_method='min', antenna_select=None,
antenna_method='average'):
import onpc_v2
data_files = itertools.chain(data_file,
*[glob.glob(os.path.join(f, '*.json')) for f in folder])
# Remove possible duplicates
data_files = sorted(set(data_files))
results = []
with tqdm(total=len(data_files)) as pbar:
with concurrent.futures.ProcessPoolExecutor(max_workers=psutil.cpu_count()) as executor:
for file in data_files:
result = onpc_v2.run(file,
lpf_size=lpf_size,
threshold_size=threshold_size,
threshold_lag=threshold_lag,
threshold_std=threshold_std,
rank_method=rank_method,
antenna_select=antenna_select,
graph=False,
interactive=False,
executor=executor)
results.append(result)
pbar.update()
return results
@cli.command(help="Run ONPC on collected data different parameters")
@click.option('-d', '--data-file', multiple=True, help='Data file')
@click.option('-f', '--folder', multiple=True, help='Data folder')
@click.option('--lpf-size', default=30)
@click.option('--threshold-size', default=600)
@click.option('--threshold-lag', default=100)
@click.option('--threshold-std', default=4.0)
@click.option('--webpage/--no-webpage', default=False)
def run_onpc(data_file, folder, lpf_size, threshold_size, threshold_lag,
threshold_std, webpage):
results = onpc(data_file, folder, lpf_size, threshold_size, threshold_lag,
threshold_std)
sorted_location_results = sorted(results, key=lambda x: (x.metadata['location'],
x.metadata['description'],
x.metadata['experiment_number']))
if webpage:
env = Environment(loader=FileSystemLoader('templates'))
env.filters['generate_graph'] = generate_graph
env.filters['get_details'] = get_details
env.filters['get_symbol_summary'] = get_symbol_summary
env.filters['get_unique_id'] = get_unique_id
env.filters['get_result_score'] = get_result_score
env.filters['get_all_results_score'] = get_all_results_score
template = env.get_template('results.html')
with open('onpc_results.html', 'w') as f:
f.write(template.render(results=sorted_location_results))
print(json.dumps(get_all_results_score(sorted_location_results), indent=2))
@cli.command(help="Test ONPC with different threshold factors")
@click.option('-d', '--data-file', multiple=True, help='Data file')
@click.option('-f', '--folder', multiple=True, help='Data folder')
@click.option('-t', '--threshold_factor', 'threshold_factors', type=float,
multiple=True, help='Threshold factor')
@click.option('-s', '--start', type=float, default=None)
@click.option('-e', '--end', type=float, default=None)
@click.option('-n', '--number', type=float, default=None)
def run_threshold_factor_test(data_file, folder, threshold_factors, start, end, number):
scores = []
interval = 13.7
actual_peaks = {'1b288878c81d4885accaf7eb8d6bf2e3': np.arange(16.9, 413, interval),
'3c52f85e46f74cb29b8d4bbc3ae961e1': np.arange(27.495, 413, interval),
'5bec18c060a3493db900007fdb77ea60': np.arange(16.886, 413, interval),
'66ec9013e9504104ba7cf6c2aef93d68': np.arange(16.483, 410, interval),
'7b20a1adccb348ff9a18ad934e08b3e9': np.arange(22.671, 413, interval),
'a026cb5b821b4df8ace9360231ec236b': np.arange(30.803, 413, interval),
'aaecd371c93d4d4da81858d83bd8981c': np.arange(20.803, 413, interval),
'e7ef6b71022f4151a377760da6be6ba5': np.arange(25.821, 413, interval),
'fc79d1bd0caa4975b0fc86db8634b4a7': np.arange(21.673, 413, interval)}
tolerence = 2
if start and end and number:
threshold_factors = list(threshold_factors) + list(np.linspace(start, end, number))
for factor in threshold_factors:
results = onpc(data_file, folder, threshold_std=factor)
false_positives = 0
false_positives_total = 0
num_detected = 0
total_symbols = 0
for result in results:
correlation = result.main_result.correlation
threshold = result.main_result.threshold
sample_period = result.sample_period.magnitude
correlation = np.nan_to_num(correlation)
threshold = np.nan_to_num(threshold)
# Find all false positives
prev_start = 0
for g in actual_peaks[result.name]:
start = int(round(prev_start / sample_period))
end = int(round((g - tolerence) / sample_period))
end = end if end < len(correlation) else len(correlation) - 1
above_threshold = correlation[start:end] > threshold[start:end]
false_positives += above_threshold.sum()
false_positives_total += (correlation[start:end] > 0).sum()
prev_start = g + tolerence
# Find all detected symbols
for g in actual_peaks[result.name]:
start = int(round((g - tolerence) / sample_period))
end = int(round((g + tolerence) / sample_period))
above_threshold = any(correlation[start:end] > threshold[start:end])
if above_threshold:
num_detected += 1
total_symbols += len(actual_peaks[result.name])
scores.append({'threshold_factor': factor,
'correct': num_detected,
'total_correct': total_symbols,
'false_positives': int(false_positives),
'false_positives_total': int(false_positives_total)})
print(json.dumps(scores, indent=2))
@cli.command(help="Test ONPC with different low pass filter sizes")
@click.option('-d', '--data-file', multiple=True, help='Data file')
@click.option('-f', '--folder', multiple=True, help='Data folder')
@click.option('-l', '--lpf-size', 'lpf_sizes', type=int,
multiple=True, help='Threshold factor')
def run_lpf_size_test(data_file, folder, lpf_sizes):
scores = []
for size in lpf_sizes:
results = onpc(data_file, folder, lpf_size=size)
score = get_all_results_score(results)
score['Low pass filter size'] = size
scores.append(score)
print(json.dumps(scores, indent=2))
@cli.command(help="Test ONPC with different rank methods")
@click.option('-d', '--data-file', multiple=True, help='Data file')
@click.option('-f', '--folder', multiple=True, help='Data folder')
def run_rank_method_test(data_file, folder):
scores = []
methods = ['average', 'min', 'max', 'dense', 'ordinal']
for method in methods:
results = onpc(data_file, folder, rank_method=method)
score = get_all_results_score(results)
score['Rank method'] = method
scores.append(score)
print(json.dumps(scores, indent=2))
@cli.command(help="Test ONPC with different antenna select configurations")
@click.option('-d', '--data-file', multiple=True, help='Data file')
@click.option('-f', '--folder', multiple=True, help='Data folder')
def run_antenna_select_test(data_file, folder):
scores = []
antennas = [[1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]]
for antenna in antennas:
results = onpc(data_file, folder, antenna_select=antenna)
score = get_all_results_score(results)
score['Antenna select'] = antenna
scores.append(score)
print(json.dumps(scores, indent=2))
@cli.command(help="Test ONPC with different antenna methods")
@click.option('-d', '--data-file', multiple=True, help='Data file')
@click.option('-f', '--folder', multiple=True, help='Data folder')
def run_antenna_method_test(data_file, folder):
scores = []
methods = ['average', 'max', 'min']
for method in methods:
results = onpc(data_file, folder, antenna_method=method)
score = get_all_results_score(results)
score['Antenna method'] = method
scores.append(score)
print(json.dumps(scores, indent=2))
if __name__ == '__main__':
cli()